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perception of their likely longevity. A key issue in how long individuals live is whether mortality 

at older ages is being compressed (i.e. whether more individuals are reaching older ages, but 

mortality at the oldest ages is broadly unchanged), or postponed (i.e. whether more individuals are 

reaching the oldest ages, but mortality at these ages is falling). We analyze historical period 

population mortality in industrialized countries and show that while there is significant evidence 

of postponement, compression has also been an extremely important factor in mortality 

improvements. One implication of this is that while the savings target needed to ensure a successful 

retirement at the median has increased dramatically, the increase at the 95th percentile has been 

much more modest: retirement savings targets have increased with increasing longevity, but the 

amount of risk in these targets has decreased both in absolute and in relative terms. 
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Abstract
A key issue in planning a successful retirement is whether mortality at older ages is being

compressed (i.e. whether more individuals are reaching older ages, but mortality at the oldest
ages is broadly unchanged), or postponed (i.e. whether more individuals are reaching the oldest
ages, but mortality at these ages is falling). We analyze historical period population mortality in
industrialized countries between 1959 and 2019 and show that compression accounts for around
two thirds (depending on sex and country) of the increase in the median age at death, while
postponement becomes increasingly dominant at higher percentiles. One implication is that
while the savings target needed to ensure a successful retirement at the median has increased
dramatically, the increase at the 95th percentile has been much more modest: retirement savings
targets have increased with increasing longevity, but the required margin for longevity risk in
these targets has decreased both in absolute and in relative terms.

1 Introduction

Understanding the patterns of human mortality at older ages is crucial for predicting future life

expectancy and planning for retirement needs. A central question both of these is whether mortality

is primarily being compressed — with deaths increasingly clustered around a certain age — or

postponed, shifting mortality risks to later in life. These two processes have different origins —

compression may be the result of longevity reaching a biological limit (Dong et al, 2016, Manton

et al, 1991), while postponement may reflect the dependence of longevity on underlying genetic
∗McCart Family Distinguished Professor of Risk Management and Insurance, Terry College of Business, University
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or economic endowments (Bosworth et al, 2016; Chetty, 2016; Poterba, Venti and Wise, 2015), or

widespread medical advances (Crimmins and Beltran-Sanchez, 2011; Crimmins and Finch, 2006).1

This paper develops a new approach for measuring the relative importance of the two processes,

uses it to analyze historical period mortality rates in industrialized countries, and then examines

the implications of the results for individuals approaching retirement.

We begin by providing a broad overview of human mortality, with a particular focus on old-age

mortality and the Gompertz law of mortality, which describes an exponential increase in mortality

rates with age. We then use the Gompertz law to define mortality compression and mortality

postponement more precisely.

Next, we examine two empirical tests that have been used in the literature to distinguish between

compression and postponement. The first method, following Zuo et al (2018), analyzes changes in

the percentiles of the distribution of age at death, while the second approach, following McCarthy

and Wang (2023), relies on the Gompertz law to track shifts in mortality patterns. We propose a

unified approach that combines insights from both perspectives and apply this framework to period

mortality data from industrialized countries from 1959 to 2019, providing new insights into the

relative importance of compression and postponement.

Finally, we explore the implications of our findings for successful retirement planning, highlighting

how shifts in mortality patterns affect both the expected present value of consumption needs in

retirement and the amount of risk in this quantity. We show that while the expected present value

of future consumption in retirement has risen as longevity has increased, the amount of risk has

decreased in both relative and absolute terms, largely because of the important role played by

mortality compression in longevity improvements. The paper concludes by summarizing key findings,

discussing how mortality may change in the future, and why this is important, and discussing

potential future research.
1See Cutler et al (2006) for a review of the determinants of mortality and Kirkwood and Austad (2000) for a

discussion of the biological factors underlying aging. Vaupel (2010) discusses the biodemography of aging.
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2 Mortality compression and mortality postponement

A key issue in studies of aging is whether mortality at older ages is being postponed or compressed.

In this section, we define the two alternatives and show why answering this question is key to

understanding developments in individual lfie expectancy at older ages.

However, before turning to this issue, it is useful to understand the broad characteristics of human

mortality. As an example, Figure 1 shows the one-year death probability of US males and females at

each age in 2000, obtained from the Human Mortality Database. The vertical axis is on a logarithmic

scale.

Figure 1: US population mortality rates by age and gender, 2000 (www.mortality.org). Lines are
indicative.

Various features are notable. First, the death probabilities of newborns and infants are very high,

being roughly the same as those of 50-year-olds for males and 60-year-olds for females. Mortality

declines after birth, reaching a lifetime low point around 10 years of age for both boys and girls.

From this point onwards, three effects are visible. First, the so-called accident hump, which affects

the mortality of teenagers and young adults, and which is more pronounced for males than for
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females. Second, there is a more gentle, broader hump in female mortality, largely representing risks

associated with childbirth, but which has almost vanished in modern times due to advances in health

care. Finally, there is an exponential increase in death probabilities with age, starting around age 40,

called senescence. (On the graph, an exponential increase shows as linear because of the logarithmic

scale). The first researcher to notice the near-exponential effect of aging on human mortality at

older ages in humans was Benjamin Gompertz (1825), after whom the associated mortality ‘law’

is named; the Gompertz law states that mortality at older ages increases exponentially with age.

The Gompertz law has been applied to the mortality of various species, as well as to machinery,

and it may be an inherent feature of the processes governing the failure of all complex machines,

as suggested by Gavrilov and Gavrilova (1981, 2015). In this paper, we we will adopt the working

assumption that the ‘natural’ pattern of human aging is provided by the Gompertz law. Some

evidence in favor of this proposition is provided by age-mortality curves in the early industrial

period (although data are incomplete and possibly incorrect). Further indicative evidence can be

seen by extending the Gompertz line backwards before age 40, as has been done in the figures

(lines are purely indicative). It is perhaps not a coincidence that the Gompertz line rejoins the

mortality curves at the age at which mortality reaches a minimum; this suggests that senescence

following the Gompertz law is present from as early as age 10, but obscured by the accident humps.

While we stress that both of these sets of evidence are simply indicative, and that this assumption

must therefore remain speculative, we will show in this paper that it is useful in interpreting broad

patterns of mortality change at older ages over the last 70 years.

We now narrow our focus to consider only the mortality rates only of those aged 50+, shown in

Figure 2. The solid lines represent the same mortality rates shown in Figure 1: those of the US

population in 2000. The solid curves have a gradient of around 9.11% for males, and a slightly

higher 9.72% for females. Female mortality at age 50 is lighter than for males of the same age, and

so the curves gradually converge as individuals age.

We stress that these so-called period curves represent different underlying people (those dying aged

50 in 2000 were born in 1950; those dying aged 100 were born in 1900), and so do not represent the
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Figure 2: US cohort and period mortality rates by age and gender (period rates for 2000, cohort
rates for generation of 1910, www.mortality.org)

lived experience of any individual or cohort, nor can they be used to examine biological features of

the aging process. Instead, for these purposes, we must use so-called cohort mortality rates, which

track the mortality of a given population of people as they age.

These cohort rates are shown as dashed lines in Figure 2, for the birth cohort of 1910. Surviving

members of this cohort reached the age of 90 in 2000, so the two curves coincide at that point. At

younger ages, the birth cohort of 1910 experienced heavier mortality than those of the same age who

were alive in 2000, because mortality improved between 1960 (when that cohort reached age 50) and

2000; at ages older than 90, the birth cohort of 1910 experienced slightly lighter mortality than the

population in the year 2000, because mortality improved between 2000 and 2010, when surviving

members of the birth cohort of 1910 reached age 100. The slope of the cohort mortality curve is

slightly shallower than for the period mortality curve, at around 8% per year of age for males and

8.5% per year of age for females; individual mortality for the cohort of 1910 therefore approximately

doubled with each advancing decade of age. While noting that period mortality rates are simply an
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analytical tool not applicable to any single individual, in this paper, we focus on period mortality

rates, and return to a discussion of cohort mortality rates in the conclusion.

Although it cannot be seen in Figure 2, the Gompertz law appears to fail at older ages, in modern

times usually after people have reached the age of 100 (or even older). At these very advanced ages,

increases in mortality rates with age begin decline and mortality may even plateau at very advanced

ages. Although data is very sparse, perhaps precluding any definitive empirical conclusion, there

are strong theoretical reasons for believing that some degree of leveling at advanced ages is correct,

related to differential frailty within each cohort (Vaupel et al, 1979). Imagine that each individual

within a cohort has mortality that follows the Gompertz law with the same rate of increase by

year of age, but some start off with higher annual mortality probabilities than others, for inherent,

perhaps biological, reasons. As time progresses, frailer individuals will die at a faster rate, meaning

that the cohort is increasingly comprised of those individuals who initially had lower mortality

probabilities. The implication is that the observed mortality of the cohort will rise by less than the

rate of increase in mortality rates of each individual member. At younger old ages, this survivor

bias is very small because mortality probabilities are low. But as mortality probabilities reach high

levels, it becomes significant and observed mortality rates increase by less than the rate of increase

of the mortality of each individual person. If severe enough, mortality may eventually plateau, and

there is some empirical evidence - admittedly disputed - that suggests that this happens when the

annual mortality probability is around 0.5 (Barbi et al, 2018, Alvarez et al, 2021), or the mortality

intensity is around 2/3.2. Following McCarthy and Wang (2023), we call the age at which the

mortality intensity first reaches 2/3 the Gompertzian Maximum Age (GMA), or Λ, and use Λ to

divide mortality differences between two populations between compression and postponement.

Now, given this mortality pattern, imagine two possible medical interventions that affect mortality.

Imagine first a disease that strikes independently of age once people reach age 50, but which is fatal,

and to which, say, 50% of the population is vulnerable for genetic or other reasons. Assume that
2A mortality intensity or hazard rate, usually written as m or µ, refers to the instantaneous probability of death

conditional on being alive (more precisely, the limit of the ratio of the probability of observing a death during a given
time interval and the length of that interval, as this length approaches zero). Death probabilities, usually written as
q, refer to the probability of dying over the next year
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some medical advance allows this disease to be cured without any long-term deleterious effects on

the mortality of survivors. The effect on overall mortality of this intervention will be much greater

at age 50 than at age 100. The reason for this is that when people are aged 50, all 50% who are

vulnerable could potentially get the disease, and so are saved, whereas by the time people have

reached age 100, almost all of the people who could have got this disease have done so and are

already dead. So the effect on mortality rates of this medical advance are as shown in the blue area

in Figure 3 - a large reduction in mortality at age 50, which gradually decreases with age, leaving

mortality at age Λ broadly unchanged. The effect is a fall in the intercept of the Gompertz line

at age 50, and an increase in its slope, keeping the mortality at age Λ unchanged. This type of

mortality improvement causes the distribution of age at death to shift to the right, but become

more concentrated, so there is an increase in the mean age at death but a reduction in the variance

of age at death. For this reason, this type of mortality improvement is called mortality compression,

because the distribution of age at death becomes increasingly compressed (Frees, 1980; Cheung and

Robine, 2007; Kannisto, 1994, 1996, 2000, 2001; Thatcher et al, 2010, Olshansky, 2016, Wilmoth

and Horliuchi, 1999).

Now imagine a second type of medical intervention that delays the underlying biological processes

governing aging. There are many such drugs available for which these types of claims are being

made - Rapamycin, NAD+ and Ozempic, to name a few, but such delays could conceivably also

be due to environmental factors such as reduced stress, better nutrition, less exposure to extreme

temperatures and other factors. Imagine that the population at age 50 is suddenly given access

to this medication. From that point onwards, their rate of aging slows down, meaning that at

each chronological age they now have mortality probabilities that untreated individuals would have

attained at earlier ages. The effect of this type of intervention is that the slope of the age-mortality

rate curve falls and the GMA rises, shown as the orange area in Figure 3. This type of mortality

improvement is called mortality postponement, because the distribution of age at death shifts to

the right reflecting the slowing of the aging process itself (in this example). (Wilmoth et al, 2000,

Robine and Vaupel, 2001, Vaupel 1997, Oeppen and Vaupel, 2002, Rau et al 2008).
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Figure 3: Decomposition of changes in slope and intercept of Gompertz mortality law into compression
and postponement

Note that mortality compression changes both the slope and the intercept of the fitted Gompertz

law, while mortality postponement changes only the slope; equivalently, mortality compression

leaves the GMA unchanged but postponement causes it to increase. This division allows changes in

mortality rates between two different populations to be apportioned to changes due to compression

and changes due to postponement. 3

3 Two tests

The analysis in the previous section suggests two tests of whether mortality is being postponed or

compressed. The first uses the distribution of age at death, and tests whether it is becoming more
3Note that the disaggregation shown in Figure 3 ascribes all reduction in the intercept to compression, and all

changes in the GMA to postponement. An alternative division could ascribe changes in the GMA keeping the slope
constant to postponement, and then any changes in the slope to compression. Neither approach is entirely satisfactory.
If, for instance, the slope remains the same but the intercept falls, the first approach might wrongly ascribe part of
what might reasonably be called mortality postponement to compression, while if the intercept remains the same but
the GMA increases, the second approach would suggest large amounts of postponement and negative compression.
For ease of comparability, we retain the approach used by McCarthy and Wang (2023), while acknowledging its
shortcomings.
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compressed or not, by examining, say, the distance between the median and the 90th percentile. This

approach was used in period data by Zuo et al (2018). They used period mortality data to calculate

the difference between the 90th percentile and other percentiles of the age at death conditional on

reaching a certain age (say 50; they used 65). Under mortality compression, this distance should

fall. Under postponement, it should stay the same. They found that there was little evidence that

the distribution of age at death over time was becoming tighter, and suggested that the dominant

pattern was therefore mortality postponement, and that this was a period-based phenomenon. The

difficulty with this approach is that the effects of changes in slope and intercept of the Gompertz

law is ambiguous as far as expected death and variance are concerned. Changes in dispersion alone

are therefore not indicative of whether mortality is being compressed or postponed in the sense

illustrated in Figure 3.

A second approach approximates mortality rates with the Gompertz law by estimating the intercept

and the slope, and examines the relationship between changes in the slope and changes in the

intercept. The second approach was used by McCarthy and Wang (2023) on cohort, rather than

period, data, using a Bayesian estimation technique to overcome difficulties associated with cohort

censoring. In contrast to Zuo et al (2018), they found that the dominant pattern in historical cohort

data was mortality compression, with occasional busts of postponement.

In this paper, we attempt to reconcile the two approaches by applying the method of McCarthy and

Wang (2023), with some3 changes, to the same period data used by Zuo et al (2018). This entails

the following steps:

1. Estimating Gompertzian parameters using period mortality data for each country, year and sex.

2. Calculating various measures of interest, such as the average various percentiles of the age at

death using these parameters as well as the actual mortality data to quantify the error associated

with using the Gompertz model.

3. Decomposing the changes in these quantities of interest between different years into the portion

due to compression, the portion due to postponement and the portion due to changes in model error.

We now discuss each step in more detail. For ease of reading, mathematical details are given in the
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mathematical appendix.

3.1 Estimating Gompertzian parameters

We used linear regression to estimate a set of Gompertzian parameters for period mortality data for

each country, year and sex. We used data from the Human Mortality Database (www.mortality.org),

the same data used by Zuo et al (2018). We set the intercept parameter equal to the observed

mortality intensity at age 50 to ensure that each Gompertzian curve started at the correct point.4

When performing the estimation, we note that each estimated mortality hazard rate in the HMD

does not have equal statistical credibility. In fact, the variance of the estimate depends on the number

of deaths at that point: the fewer deaths that occur (either because the underlying population is

small or because the mortality probability is small) the less statistically reliable the estimated rate

from the HMD. In doing the regression, we therefore weighted the HMD hazard rate at each age

with the number of deaths at that age (this approach was first used by ***). As a consequence,

the decline in mortality at older ages does not bias the results very much because very few deaths

occur at these extremely advanced ages. We include all data, suitable weighted as discussed, in our

estimates. Details are shown in the mathematical appendix.

Numerical results are shown for the US in Table 1. Panel A refers to males and Panel B to females.

We chose to use 2019 as the final year because it is the last year pre-Covid, so it prevents (the

hopefully temporary) effects of Covid on mortality from biasing our conclusions, and examined

mortality each decade starting in 1959 (roughly the same starting point used by Zuo at al (2018);

they used 1960). The estimated intercept is shown in line A and the slope in line B in each panel.

For males and females, the intercept falls fairly consistently over the period, indicating mortality

improvement at age 50. From 1959 to 1999, the slope parameter increases for males, suggesting

the presence of compression, and decreases between 1999 and 2019, suggesting the presence of

postponement. For feamles, the slope parameter is more variable. But we cannot decisively choose

between compression and postponement without examining the Gompertizan Maximum Age (as
4We could have fitted both the intercept and the slope using regression; the line of best fit would then under-predict

mortality at the very youngest ages. The overall predictions would be similar but the interpretation would be
somewhat clouded. Because mortality rates at 50 are reasonably precisely estimated, we retain this approach here.
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a reminder, denoted the GMA, or Λ, this is the age at which the Gompertzian-implied mortality

intensity first reaches 2/3 (equivalent to an annual death probability of ∼ 0.5). Because the slope

parameter is estimated with error, our estimate of Λ has a statistical distribution, which we calculated

using results shown in the mathematical appendix.

Results are reported in lines C and D of each panel. Strikingly, the GMA changed by less than 9

months for US males between 1959 and 1999, suggesting that mortality improvements for males

were driven largely by compression. For US females over the same period, the GMA increased by

nearly two years. Between 1999 and 2019, however, the GMA increased by nearly 5 years for males

and 3 years for females, indicating significant and rapid mortality postponement. Over the whole

period, the GMA increased by 5.63 years for males and 4.94 years for females. The expected age at

death calculated using the Gompertizan model (shown in line E, see the mathematical appendix for

details) increased consistently over the period for both males and females, over the whole period by

6.30 years for males and 5.22 years for females.

To aid interpretation of these results, Figures 4 and 5 show the true and fitted Gompertzian hazard

rates for males and females from 1959 to 2019. The patterns of compression and postponement

described in the previous section are evident in these graphs. But more insights can be gleaned:

until 1999, the Gompertz model fits mortality hazard rates for males extremely well until at least

age 90, and possibly even higher. At older ages, mortality rates flatten and even appear to decline.

Part of this is due to differential frailty leading to selection at older ages, but part may also be due

to misrecording of age at death (individuals dying aged ∼ 100 in 1959 were born around 1859, and

their true ages might have been difficult to determine; see the work of Saul Newman ***). But

starting in 2009 in these data, the Gompertz model fits male mortality increasingly badly: mortality

is too low relative to the Gompertizan estimate for US males in their 70’s and early 80’s, and too

high relative to the Gompertzian estimate for those in their late 80’s and 90’s. Maintaining our

working assumption is that the Gompertz model represents ’natural’ mortality due to sensescnce,

the conclusion would be that some intervention is shifting some deaths from the seventh and eighth

decades of life to the ninth and tenth, and that this effect is getting stronger over time. Note also
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that the slowing of the rate of mortality increase with age for those older than age 100 is still present;

this evidence can be assumed to be more credible than similar results in earlier years due to better

recording of birth dates in the first decades of the 20th century relative to fifty years earlier in the

US.

For females, similar patterns hold. The Gompertz law fits again better in earlier years, and worsens

in the same systematic way in more recent years: deaths are increasingly being shifted from those in

their sizties and seventies to those in their eighties and nineties. But for females, this shifting of

mortality relative to the Gompertz law is observable even in 1959.

These patterns are made more concrete when we examine the distribution of age at death rather

than the hazard rates. Figure 6 for males and Figure 7 for females shows the distribution of age

at death of a theoretical population aged 50 that experiences the mortality rates at each age that

the US population experienced in each year of our investigation. These types of calculations are

the basis of the life expectancy at birth measures often reported in the popular press, and produce

measures that are useful to understand patterns in mortality tables, even if they do not apply to real

individuals who will only reach older ages in future years when mortality patterns will have changed,

and do not reflect the actual distribution of age-at-death in the population due to changes in cohort

size. Dotted lines show the distribution of age at death implied by the fitted Gompertz model,

while solid lines show the distribution of age at death if mortality rates at each age equaled those

experienced by the US population in that year. In earlier years, the Gompertz model fits well, but

in later years the shifting of deaths into the ninth and tenth decades of life is evident. Interestingly,

however, the Gompertz model still fits well at younger ages (by design), and at the oldest ages.

Again, making the assumption that the Gompertz model represents the ’natural’ level of mortality,

this suggests two operative effects: one is causing the Gompertz parameters themselves to shift,

and the other is increasingly causing deviations from the Gompertz law in the middle of the age

distribution. Note that the number of deaths of people in their nineties is higher than the Gompertz

model would predict both because the surviving population at these ages is larger (because fewer

individuals died earlier than the Gompertz model predicted) and because the actual mortality rates
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are higher than the Gompertz model would predict for that age. This population effect magnifies

the errors in the Gompertz model, which is why such small differences in the predicted hazard rates

appear to have such large effects in the distribution of age at death.

A quantitative measure of the goodness-of-fit of the Gompertz model is provided by the Kolmogorv-

Smirnoff test statistic, defined as the largest absolute value of the difference between the empirical

cumulative distribution function (not the density functions shown in the figures) of age at death and

the theoretical distribution of the same quantity derived using the Gompertz model. Results are

shown in line E of table 1. A higher number indicates a worse fit. For males the Gompertz model

fits equally well until 1989, when it starts to worsen. For US females, the fit is worse than for males,

even in 1949, and rises fairly consistently over the sample period.

3.2 Calculating measures of interest

Since the focus of this paper is on retirement preparedness, we focus on two questions that should

concern any person planning their financial affairs. First, what is my expected lifespan, and second,

how uncertain is it? While variance is a traditional measure of uncertainty, it is hard to interpret

where the underlying distribution is not Guassian (as is the case here). So to answer the second

question, we focus on percentiles of the distribution of age at death. Following Zuo et al (2018), we

calculate the median, 75th and 90th percentiles, to which we add the 95th percentile using both the

fitted Gompertz model and the true distribution of age at death. The GMA can be thought of as

the 99.99th percentile - not quite the top of the distribution, but very close to it.

The expected age at death of a theoretical population aged 50 that suffers the mortality experienced

by the US population at each age in 1959 was 73.1 years for males (shown in line G of Table 1),

and rose steadily to reach 80.1 years by 2019. For females, the expected age at death was nearly

5 years higher at 77.1 years, rising to 83.7 years by 2019. Note that these values are higher than

life expectancy at birth for those years because we are assuming that the population is initially

aged 50; these are therefore life expectancy measures conditional on reaching age 50. They imply

that a 50-year old male who expects to suffer mortality at each future age equal to the mortality
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suffered by the US population in 2019 can expect to live for an additional 30.1 years, and a female

an additional 33.7 years.

Given the apparently large errors in the distribution of age at death, it is perhaps surprising to note

that the Gompertz model would predict very similar numbers (shown in line E): 72.9 years in 1959,

rising to 79.2 years in 2019 for males, and 77.1 years in 1959 rising to 82.3 years in 2019 for females.

But any individual who planned their financial affairs only on this basis would run out of money

with a probability of around 0.5, depending on whether the distribution is left- or right-skewed.

Most people would probably regard this risk as unacceptable. A more reasonable approach would be

choose a percentile of the age-at-death distribution, and plan around that. To accommodate various

levels of risk aversion, we calculated the median (50th percentile) (line K), 75th percentile (line O),

90th (line S) and 95th (line W) percentiles; a 50-year old individual who planned their consumption

and savings using the 95th percentile as a reference would face a 1/20 chance of running out of

money and so on. In 2019, the median age at death for males aged 50 was 81 years, not too different

from the mean. But the 75th percentile was 88.1 years, the 90th 92.9 years and the 95th 95.4 years.

For females, the results are even more extreme: the median is 84.9 years (again, slightly higher than

the mean), the 75th percentile is 91 years, the 90th 95 years and the 95th 97.8 years. These results

imply that to be 95% certain of not outliving their assets, a 50-year old US male would need to

plan on living another 45.4 years and a female 47.8 years, significantly higher than the mean value

typically used for financial planning. This point has been made forcefully by Mitchell ***.

3.3 Understanding changes in these measures

We now use the approach in Figure 3 to divide changes in these quantities over each decade into

three pieces. For the first two, the change due to mortality postponement and the change due to

mortality compression, we use the fitted Gompertz model and formulae explained in the mathematical

appendix. To this we add a third component: changes in the extent to which the Gompertz model

is a good fit, representing model error. Because the Gompertz distribution appears to fit well at the

very oldest ages, this third set of errors can be regarded as compression of a different type: some
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intervention which is increasingly shifting the the middle of the age-at-death distribution to the

right with little effect at the very oldest ages, in addition to the Gompertzian compression and

postponement identified following Figure 3. Of course, future advances in medical technology may

change this as medical attention shifts to the process of aging itself.

This disaggregation is shown in rows H, I and J of Table 1 for the expected age at death, rows L, M

and N for the median, rows P Q and R for the 75th percentile etc. In each column, these figures

represent changes over the subsequent decade, with total changes over the period due to each factor

in the right-most column. For instance, in 1959, the expected age at death was 73.09 years for males.

Over the subsequent decade, postponement reduced this by 0.11 years, compression raised it by 0.13

years, and model error reduced it by 0.1 years. The sum of these three components is a reduction of

0.08 years, and the expected age at death in 1959 was 73.09 - 0.08 = 73.01 years, as shown in the

next column of the table (figures may not add due to rounding). For US males, the figures show

that most mortality improvements between 1959 and 1999 were due to Gompertzian compression,

with Gompertzian postponement and model error playing a very small role. Over the subsequent

two decades, between 1999 and 2019, there was signficant postponement. For females, on the other

hand, postponement was more evenly spread throughout the period. Over the entire 60 years, the

majority of changes in the mean, median, 75th and 90th percentiles were due to compression for

both males and females, with postponement playing a much smaller role. Only for changes in the

95th percentile did postponement comprise more than half of the change. Note also that the higher

the percentile, the lower the total change (compare, for example, rows K and W in the last column

for both males and females). As expected from the figures, Gompertzian error is most significant at

the median, given the shifting in the distribution of age at death that the error is capturing. But

even at the median, the model error only accounts for around one sixth (1.53/8.48) of the total

change for males and slightly less for females. At the 90th percentile, the error is of the order of one

twentieth, before rising slightly in the 95th percentile.
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3.4 Other countries

Much ink has been spilled - rightly - lamenting poor US life expectancy (see, for example, Case

and Deaton, 2015). What is not often realized, however, is that US life expectancy at birth is so

poor relative to peer countries primarily - but not entirely - because of higher mortality at younger

ages. To explore this issue we now turn to a comparison of the US and other countries, focusing

initially on France, Japan and the UK. These countries were chosen for size of population (larger is

better), length of data availability (longer is better) and reliability of mortality statistics (Spain and

Italy have large populations and available data, but show some evidence of inaccurate mortality and

birth records in earlier years; German data is not available before reunification in 1990). Similar

results to those shown for the US can be found in Tables 2 to 4 and Figures 8 to 19.

In 1959, US males and females had GMA’s that were much higher, and life expectancy at 50 slightly

higher than France, Japan and the UK. Over the subsequent 60 years, mortality in those countries

improved much faster than the US. By 2019, all three countries had life expectancy at 50 between 2

and 3 years higher than the US for males, and between 1 and 5 years higher for females, although

the GMA for the US was still higher than any country except Japan for males and females. The

slope for the US was lower, but the intercept higher, meaning that the gap in mortality hazard rates

between the US and other countries narrows with advancing age for both males and females. Older

than around age 85 for instance, in 2019, US males had very similar death probabilities than males

of the same age in the other three countries, but US females had lower mortality rates than UK

females and higher mortality rates than either French or Japanese females of the same age. At ages

younger than these, the US is a conspicuous outlier among this group.

The disaggregation into postponement, compression and model error shows that other countries typ-

ically had higher postponement and compression, but lower model error than the US. Improvements

were much more consistent across time in the other countries than in the US, especially for males,

where the US pattern of postponement, in particular, appears to be highly anomalous.

Table 5 shows the total change in the various measures over the period 1959 to 2019 for a larger

sample of countries, and its disaggregation into postponement, compression and model error. Very
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similar patterns are evident: most of the change is due to compression, with postponement taking a

back seat. The greater the percentile, the more significant postponement becomes. Model errors

are largest at the median and smallest at the 90th percentile, before increasing slightly at the 95th

percentile, suggesting that deviations from the Gompertz law are primarily consistent with mortality

compression rather than postponement in all of these countries.

4 Implications for successful retirement

We now turn to examining the implications of our results for successful retirement. Successful

retirement depends on many factors; here we focus only on the effect of uncertainty in lifespan,

and make the assumptions needed to reduce the complexity of the underlying problem to the point

where it can be analyzed efficiently. There seem to be two main tests financial advisors use to assess

retirement adequacy. Fidelity (2025) and T Rowe Price (2025) use an asset test and recommend

that individuals have between 8 and 13 times their wages in assets in order to retire. It is unclear

whether income should be net or gross of taxes and housing costs and whether assets include the

value of owner-occupied housing or whether the value of assets held in tax-preferred accounts such

as non-Roth 401(k) plans or IRA’s should be netted down for taxes. Vanguard (2024), on the other

hand, uses an income test based on the ‘4%’ rule, and maintains that 4% of retirement assets plus

social security should be sufficient to meet around 80% of pre-retirement wages. The income and

asset tests are broadly interchangeable given an individual’s social security (SS) replacement rate.

For instance, if an individual’s SS replacement rate is 30%, then Vanguard’s approach would suggest

that retirement assets would need to be (0.8-0.3)/0.04 = 12.5 times pre-retirement income.

For the purposes of this paper, we need a measure of retirement adequacy that focuses only on the

effect of uncertainty in lifespan. While recognizing that both the asset- and income-based approaches

have their uses, particularly where most individuals take on substantial amounts of investment risk

in retirement, we therefore depart from both and use a consumption-based measure of adequacy

instead. We ask a simple question: what multiple of total consumption do individuals need in assets

at retirement in order to guarantee that they have sufficient assets to reach a particular percentile
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of the age-at-death distribution (measured at age 50), if their consumption is to remain constant

in real terms over the remainder of their lives. We exclude allowance for investment risk, and so

discount future consumption at long-term real US Treasury rates (currently around 2.5% p.a.). By

taking investment risk, individuals may earn higher expected returns, but these come at the expense

of greater variability of outcomes, and the market price of this risk is reflected in asset prices and

hence future returns. Of course, newly-retired people are likely to differ from the ‘average’ investor

in systematic ways. First, they are likely to be more, rather than less, risk averse, if only because

of their lack of human capital, and second, they probably have a long time horizon because they

are investing to finance future consumption, which may be as much as three or even four decades

distant. If equity market returns are mean-reverting, recent retirees may well do better by taking

on some investment risk, and many financial advisors indeed recommend that they do, but precise

examination of this point is beyond our scope. We focus on asset needs at the point of retirement

because this allows easy comparability with the commonly-used tests described above, even though

we are examining the distribution of age-at-death conditional on reaching 50 rather than on reaching

retirement age.5 We also ignore the possibility that individuals can hedge some of their longevity

risk, either by purchasing an annuity (to my knowledge, CPI-linked annuities are not currently

available for purchase in the US, and few people purchase immediate annuities of any type in any

case), or by engaging in mortality risk transfer with their families (by trading the possibility of a

bequest in the case of early death with care provided or financed by family members if longevity is

higher than expected; this approach is probably much more common, although most transactions of

this type are probably implicit rather than explicit). Table 6 shows this multiple for retirement at

age 62; table 7 for retirement at age 67 and table 8 for retirement at 70. In each table, Panel A

shows figures for males and Panel B figures for females. Each year is shown in a different row, and

each column shows the percentile of the age-at-death distribution (conditional on reaching age 50).

The final column shows the GMA (remaining life expectancy at the GMA is 1.5 years under the

assumption that mortality intensities remain constant thereafter).

Table 6 shows that a male retiring at 62 in 1959 would have needed assets worth 6.4 times
5We may alter our tables to reflect this point in future versions
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consumption in order to be 50% sure that he would not outlive his assets, and assets worth 13.8

times consumption in order to be 95% sure. Note that these figures assume that social security

replaces 30% of consumption and that assets are held in after-tax accounts. If assets are held

in pre-tax accounts such as IRA’s or 401(k) accounts, these values would need to be grossed up

by dividing by 1 − τ where τ is the individual’s average tax rate in retirement. For instance,

an individual whose social security income covered 30% of their consumption, but who paid an

average tax rate in retirement of 20% would need assets in pre-tax accounts of 6.41/0.8 = 8.01 times

consumption in order to cover future consumption with 50% probability. Different SS replacement

rates (or DB pension income or annuity income that is CPI-indexed) can likewise be allowed for by

multiplying these figures by (1 − RRSS,DB)/0.7. So 1959 US male for whom SS covered only 20%

of consumption would need post-tax assets of 6.41 x 0.8/0.7 = 7.33 times consumption.

Females have much higher asset needs than males at lower percentiles, reflecting their lower mortality,

but as the degree of certainty required increases, asset needs rise and those of males approach those

of females. As the degree of certainty required rises, asset need unsurprisingly rise. To be 95% sure

of outliving his assets, a male retiring in 1959 at age 62 needed 13.8 / 6.41 = 2.15 as many assets as

someone who was content to be 50% sure of not outliving his assets. But by 2019, this multiple had

shrunk for both males and females (to 15.71 / 10.49 = 1.50 for males and from 1.62 in 1959 to 1.36

for females). This pattern holds in both relative and in absolute terms.

Table 7 show equivalent figures for people retiring at age 67, and Table 8 for those retiring at 70.

As the retirement age gets older, the amount of assets required falls. Note that the tables likely

understate the effect of working longer because they assume a constant 30% of consumption needs

are met by SS; as retirement is delayed, SS payments increase due to the adjustment factors applied

to SS pension amounts reflecting early or delayed retirement. As retirement age increases, the

higher asset requirements caused by uncertainty in lifespan rises: males retiring at 62 in 2019 needed

50% more assets to move from the median to the 95th percentile, but males retiring at 67 needed

14.09/8.19 - 1 = 72% more assets and males retiring at 70 needed 17.04 - 6.67 - 1 = 95% more

assets. Because SS affects both the assets needed to reach the median age-at-death and the assets
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needed to reach any other percentile by an equal proportion, these ratios are unchanged regardless

of social security.

We therefore have two stylized facts that need explanation: first, the effect of longevity uncertainty

on savings targets at retirement has fallen dramatically over the last sixty years, and second that

the effect of longevity uncertainty rises as retirement age rises. The first is explained by the pattern

of mortality improvement over the last six decades: as we have shown, for US males and females,

compression, rather than postponement, has been the dominant pattern in mortality improvement.

This means that the lower percentiles of the age-at-death distribution have increased faster than the

higher percentiles. For instance, the median age-at-death of US males conditional on reaching age 50

increased by 8.48 years (compression explains around 80% of this change), but the 95th percentile

only increased by 5.85 years (postponement explains around 65% of this) (6.71 and 4.89 years for

females). The second reason is that improvements in higher percentiles have a smaller effect on

savings targets than improvements in lower percentiles because of the effect of compound interest:

the median age at death is reached someting like 14 years before the 95th percentile for US males

and females, meaning that assets held have a longer time to accrue interest and a lower present

value.

The second stylized fact (that the effect of uncertainty rises with the retirement age) is primarily a

mechanical effect of working longer: the amount of assets needed to reach the median age at death

falls by more than the amount of assets needed to reach the 95th percentile, implying that the

amount of risk must increase.

5 Conclusion

This study has examined whether improvements in old-age mortality are primarily driven by mortality

compression or mortality postponement, using period mortality data from industrialized countries.

Our findings suggest that the dominant pattern has varied over time and between countries. In

the US, for example, mortality improvement among US males were largely explained by mortality

compression in the second half of the twentieth century, but postponement became highly significant
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in the first two decades of the twenty-first, while for US females, postponement and compression were

more eveny spread across the last sixy years. In other countries we have examined, postponement

was relatively more important than in the US, suggesting that yet greater improvements in US

old-age mortality are possible.

Our analysis also shows that the Gompertz model has become an increasingly poor model of old-age

period mortality. In most countries, the Gompertz model fit mortality after age 50 reasonably

well in 1959, especially for males. Over time, some deaths in the eighth and ninth decade of life

have shifted (or been shifted) to the ninth and tenth decades, even once changes in the Gompertz

parameters over time have been allowed for. We tentatively suggest that these changes may be

due to the increased ability of medical technology to treat diseases afflicting the aged that in prior

times would have been fatal. This ’Gompertzian error’, as we have termed it, primarily affects the

age-at-death distribution around its median, but appears to have little effect at extreme old ages.

These changes have had two significant effects on the savings target needed for a successful retirement.

First, the savings target needed to sustain consumption until the average or median age-at-death has

increased dramatically. In 2019, a US male retiring at 67 for whom social security supported 30% of

his consumption needed after-tax savings of 8.19 times annual consumption to support himself until

the median age-at-death, more than double the 3.58 times consumption he would have needed at

the same age in 1959, representing a 129% increase. At the same time, however, the amount needed

to reach the higher percentiles has not increased by as much. For instance, the amount of savings

needed to be 95% sure of matching post-retirement consumption increased by only 18% between

1959 and 2019 for the same individual. Part of this is due to simple compound interest: payments

late in life, discounted to retirement age, are less significant in present value terms than payments

received earlier. But part of the difference also reflects the fact that a significant fraction of lngevity

improvement is due to compression rather than postponement.

One important qualification of our results is that they are based on period mortality rates. Individuals

age with time, meaning that savings targets strictly depend on cohort, rather than period mortality.

One interesting possibility is that the increasingly-large deviations from the Gompertz law that we
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have identified in period mortality rates affecting primarily the middle of the old-age distribution

are a product of cohort-related changes in Gompertzian parameters rather than changes in the

applicability of the Gompertz law itself. As medical interventions increasingly target aging itself,

rather than just its symptoms, and are successful in doing so, we may expect such a pattern to

emerge in the data in the coming years. Investigation of this point requires the type of analysis we

have presented here to be repeated for birth cohorts, rather than calendar years, an investigation we

intend to undertake.
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6 Mathematical appendix

6.1 Regression analysis

The HMD produces estimates of the mortality hazard rate mi,j,k at age i in country j for sex k.

Suppressing subscripts j and k, we have the following model:

log(mi) = λ + δ(i − 50) + ϵi (1)

Each estimate of mi is obtained by dividing the observed number of deaths at age i by the known total

amount of time people in the data are observed at age i, called the exposure-to-risk at age i or Ei, so

mi = Di/Ei and log(mi) = log(Di)−log(Ei). Although Di is binomial with mean Eiqi, and variance

Eiqi(1 − qi) where qi is the true but unknown probability of death at age i, we approximate it with

the lognormal distribution with parameters µ and σ2, to obtain σ2 = log(1 + 1−qi

Eiqi
) ≈ 1−qi

Eiqi
≈ 1

Eiqi
.

Following the general principle of weighted least squares, which is to set the observation weight

equal to the inverse of the variance of the error, we therefore set the weight of each point equal to

the number of observed deaths at each age, which is our best estimate of Eiqi.

In the regression, we also set our estimate of λ equal to the observed mortality rate at age 50, and

so estimate the slope δ using weighted least squares.

6.2 Gompertzian maximum age

We use our estimates of λ and δ obtained from (1) to calculate the GMA as:

Λ̂ = log(2/3) − λ̂

δ̂
+ 50

From the properties of regression estimators,

(λ, δ) ∼ BV N(M, Σ) so (log(2/3) − λ, δ) ∼ BV N(M∗, Σ∗)
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where

M∗ =

log(2/3) − µλ

µδ


and

Σ∗ =

 σ2
λ −σλδ

−σλδ σ2
δ

 .

Hence,

E[Λ] ≈ log(2/3) − µλ

µδ

(
1 + σ2

δ

µ2
δ

+ σλδ

(log(2/3) − µλ)µδ

)
+ 50.

and

Var(Λ) ≈ 1
µ2

δ

(
σ2

λ + 2σλ,δ
(log(2/3) − µλ)

µδ
+ (log(2/3) − µλ)2

µ2
δ

σ2
δ

)
.

6.3 Life expectancy and percentiles of Gompertz distribution

If a population has mortality at each age exactly equal to that implied by the Gompertz law with

parameters λ and δ, and mortality hazard rate plateaus at the GMA at 2/3, then remaining period

life expectancy at 50 is given by:

BLE(λ, δ) = 1
δ

exp(exp(λ)/δ)(E1(exp(λ)/δ) − E1(2/3/δ)) + 1.5exp

(
exp(λ) − 2/3

δ

)
(2)

where E1(x) is the exponential integral defined as E1(x) =
∫ ∞

x
e−y

y dy.

Percentiles can be obtained from the distribution function of the Gompertz distribution.
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6.4 Dividing changes between postponement and compression

The change in base life expectancy between two populations a and b with b > a can then be

calculated as:

BLE(λb, δb) − BLE(λa, δa) = BLE(λb, δb) − BLE(γ0, γ1) + BLE(γ0, γ1) − BLE(λa, δa), (3)

where γ0 = λ and γ1 = log(2/3)−λb

log(2/3)−λa

The first two terms represent the change due to postponement and the second two the change due

to compression.

A similar approach is followed for percentiles.

Model error is estimated by taking the difference between actual life expectancy (or percentiles) and

the life expectancy (or percentiles) measured off the fitted Gompertz distribution for that year.
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8 Tables

Panel A: US Males aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -4.5963 -4.6171 -4.8345 -5.0566 -5.2421 -5.2342 -5.3302

Slope (B) 0.0801 0.0811 0.0826 0.0878 0.0911 0.0843 0.0849
GMA (C) 102.35 101.92 103.59 102.99 103.09 107.3 107.98 5.63

Var(GMA) (D) 0.1743 0.1918 0.1415 0.1083 0.1135 0.4266 0.4173
Exp. age at death (Gomp) (E) 72.9 72.92 74.75 75.94 77.06 78.39 79.2 6.30

K-S statistic (F) 0.01 0.01 0.01 0.01 0.03 0.06 0.05
Expected age at death (G) 73.09 73.01 74.98 76.18 77.6 79.48 80.09 7

∆ due to: postponement (H) -0.11 0.47 -0.18 0.03 1.37 0.22 1.8
compression (I) 0.13 1.36 1.38 1.09 -0.05 0.6 4.5
model error (J) -0.1 0.14 0 0.3 0.57 -0.21 0.7

Median age at death (K) 72.53 72.38 74.56 76.08 77.92 80.31 81.02 8.48
∆ due to: postponement (L) -0.11 0.47 -0.19 0.03 1.39 0.23 1.83

compression (M) 0.16 1.57 1.57 1.22 -0.05 0.67 5.13
model error (N) -0.2 0.15 0.13 0.59 1.05 -0.19 1.53

75th perc. of age at death (O) 80.47 80.24 82.43 83.54 84.87 87.18 88.08 7.60
∆ due to: postponement (P) -0.16 0.69 -0.26 0.05 1.92 0.31 2.54

compression (Q) 0.14 1.39 1.36 1.04 -0.04 0.57 4.46
model error (R) -0.21 0.12 0.01 0.24 0.43 0.02 0.6

90th perc. of age at death (S) 86.37 86.32 88.39 89.19 90 92.04 92.87 6.5
∆ due to: postponement (T) -0.21 0.86 -0.32 0.06 2.34 0.38 3.1

compression (U) 0.12 1.19 1.15 0.87 -0.04 0.47 3.77
model error (V) 0.03 0.03 -0.03 -0.11 -0.26 -0.03 -0.37

95th perc. of age at death (W) 89.49 89.55 91.59 92.21 92.73 94.58 95.35 5.85
∆ due to: postponement (X) -0.23 0.95 -0.35 0.06 2.55 0.42 3.39

compression (Y) 0.11 1.07 1.03 0.77 -0.03 0.42 3.37
model error (Z) 0.19 0.01 -0.06 -0.31 -0.68 -0.07 -0.91

(table continues below)
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Panel B: US Females aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -5.2074 -5.2505 -5.4632 -5.6282 -5.7897 -5.7217 -5.8165

Slope (B) 0.0893 0.088 0.0876 0.0919 0.0972 0.0912 0.0923
GMA (C) 103.78 105.03 107.72 106.85 105.41 108.32 108.62 4.84

Var(GMA) (D) 0.2391 0.2801 0.2711 0.1752 0.1657 0.4036 0.4424
Exp. age at death (E) 77.09 77.75 79.93 80.59 80.93 81.66 82.31 5.22

K-S statistic (F) 0.04 0.05 0.05 0.04 0.04 0.07 0.07
Expected age at death (G) 77.85 78.64 80.76 81.25 81.65 83.12 83.69 5.85

∆ due to: postponement (H) 0.41 0.94 -0.32 -0.56 1.1 0.11 1.69
compression (I) 0.25 1.24 0.97 0.9 -0.36 0.54 3.54
model error (J) 0.12 -0.05 -0.17 0.06 0.75 -0.07 0.63

Median age at death (K) 78.14 79.06 81.46 81.96 82.39 84.07 84.85 6.71
∆ due to: postponement (L) 0.42 0.97 -0.33 -0.58 1.14 0.12 1.73

compression (M) 0.28 1.37 1.06 0.97 -0.39 0.58 3.88
model error (N) 0.22 0.05 -0.24 0.04 0.93 0.09 1.1

75th perc. of age at death (O) 84.9 85.84 88.26 88.78 88.89 90.37 90.98 6.07
∆ due to: postponement (P) 0.58 1.3 -0.43 -0.76 1.49 0.15 2.34

compression (Q) 0.24 1.16 0.89 0.8 -0.32 0.48 3.24
model error (R) 0.11 -0.03 0.06 0.07 0.3 -0.02 0.5

90th perc. of age at death (S) 90.03 90.91 93.4 93.76 93.61 94.92 95.41 5.38
∆ due to: postponement (T) 0.7 1.56 -0.52 -0.89 1.76 0.18 2.8

compression (U) 0.2 0.96 0.74 0.66 -0.26 0.39 2.69
model error (V) -0.02 -0.03 0.14 0.08 -0.19 -0.08 -0.1

95th perc. of age at death (W) 92.89 93.7 96.13 96.38 96.09 97.39 97.78 4.89
∆ due to: postponement (X) 0.77 1.69 -0.56 -0.96 1.9 0.19 3.04

compression (Y) 0.18 0.85 0.65 0.58 -0.23 0.35 2.38
model error (Z) -0.14 -0.11 0.16 0.08 -0.37 -0.14 -0.53

Table 1: Gompertzian fitted parameters (first sub-panel) and various metrics (following sub-panels)
of the distribution of age at death conditional on reaching age 50, and disaggregation of changes
in these metrics due to postponement, compression and model error, US. Males in Panel A and
Females in Panel B. Changes refer to changes over the subsequent decade.
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Panel A: French Males aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -4.6865 -4.6676 -4.728 -4.9964 -5.1162 -5.3104 -5.6048

Slope (B) 0.0862 0.086 0.0819 0.0856 0.0854 0.085 0.0906
GMA (C) 99.67 99.54 102.78 103.61 105.17 107.73 107.42

Var(GMA) (D) 0.1295 0.1005 0.2339 0.2544 0.41 0.5576 0.4949
Exp. age at death (E) 72.76 72.61 73.85 75.77 76.98 79 80.66

K-S statistic (F) 0.03 0.01 0.04 0.04 0.06 0.08 0.08
Expected age at death (G) 73.23 72.96 74.66 76.5 78.19 80.29 81.89 8.66

∆ due to: postponement (H) -0.04 0.89 0.25 0.49 0.85 -0.11 2.33
compression (I) -0.11 0.36 1.66 0.72 1.17 1.77 5.58
model error (J) -0.11 0.45 -0.07 0.48 0.08 -0.06 0.76

Median age at death (K) 73.07 72.43 74.66 76.92 78.79 81.41 83.28 10.22
∆ due to: postponement (L) -0.04 0.87 0.25 0.49 0.86 -0.12 2.33

compression (M) -0.13 0.42 1.91 0.82 1.31 1.95 6.28
model error (N) -0.47 0.94 0.1 0.56 0.44 0.04 1.61

75th perc. of age at death (O) 80.22 79.86 81.82 83.97 85.62 87.84 89.47 9.25
∆ due to: postponement (P) -0.05 1.29 0.36 0.7 1.19 -0.16 3.32

compression (Q) -0.12 0.37 1.67 0.71 1.12 1.64 5.39
model error (R) -0.19 0.29 0.12 0.26 -0.08 0.14 0.54

90th perc. of age at death (S) 85.53 85.48 87.25 89.04 90.46 92.46 93.76 8.23
∆ due to: postponement (T) -0.07 1.63 0.44 0.85 1.43 -0.18 4.11

compression (U) -0.1 0.31 1.42 0.59 0.94 1.37 4.53
model error (V) 0.12 -0.18 -0.06 -0.03 -0.37 0.12 -0.4

95th perc. of age at death (W) 88.4 88.47 90.11 91.79 92.98 94.86 96.03 7.63
∆ due to: postponement (X) -0.08 1.82 0.49 0.93 1.57 -0.2 4.53

compression (Y) -0.09 0.28 1.27 0.53 0.83 1.21 4.04
model error (Z) 0.23 -0.45 -0.08 -0.27 -0.52 0.16 -0.94

(table continues below)
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Panel B: French Females aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -5.353 -5.38 -5.6527 -5.8882 -5.9615 -6.0521 -6.2343

Slope (B) 0.0972 0.0955 0.0978 0.1 0.0986 0.0959 0.0992
GMA (C) 100.93 102.11 103.65 104.82 106.35 108.89 108.77

Var(GMA) (D) 0.2718 0.3024 0.3873 0.4223 0.5313 0.6568 0.5931
Exp. age at death (E) 76.94 77.5 79.53 81.21 82.2 83.7 84.6

K-S statistic (F) 0.05 0.06 0.08 0.09 0.11 0.12 0.13
Expected age at death (G) 77.99 78.74 81 82.93 84.33 85.93 86.86 8.86

∆ due to: postponement (H) 0.42 0.59 0.47 0.62 1.05 -0.05 3.1
compression (I) 0.14 1.44 1.21 0.37 0.46 0.95 4.58
model error (J) 0.18 0.23 0.25 0.42 0.11 0.03 1.22

Median age at death (K) 78.34 79.09 81.6 83.69 85.2 87.01 88.09 9.75
∆ due to: postponement (L) 0.43 0.61 0.49 0.65 1.09 -0.05 3.22

compression (M) 0.16 1.57 1.29 0.39 0.49 0.99 4.9
model error (N) 0.16 0.33 0.3 0.47 0.23 0.14 1.63

75th perc. of age at death (O) 84.44 85.26 87.34 89.19 90.56 92.25 93.2 8.76
∆ due to: postponement (P) 0.58 0.8 0.63 0.83 1.39 -0.07 4.16

compression (Q) 0.13 1.3 1.06 0.32 0.4 0.81 4.01
model error (R) 0.11 -0.02 0.16 0.23 -0.1 0.21 0.59

90th perc. of age at death (S) 89.17 89.94 91.82 93.4 94.67 96.2 97.06 7.90
∆ due to: postponement (T) 0.69 0.95 0.74 0.96 1.61 -0.08 4.87

compression (U) 0.11 1.07 0.86 0.26 0.32 0.66 3.28
model error (V) -0.03 -0.13 -0.01 0.04 -0.4 0.29 -0.25

95th perc. of age at death (W) 91.74 92.55 94.34 95.74 96.92 98.42 99.23 7.50
∆ due to: postponement (X) 0.75 1.02 0.79 1.03 1.73 -0.08 5.24

compression (Y) 0.1 0.94 0.76 0.23 0.28 0.58 2.88
model error (Z) -0.04 -0.17 -0.15 -0.08 -0.52 0.32 -0.63

Table 2: Gompertzian fitted parameters (first sub-panel) and various metrics (following sub-panels)
of the distribution of age at death conditional on reaching age 50, and disaggregation of changes in
these metrics due to postponement, compression and model error, France. Males in Panel A and
Females in Panel B. Changes refer to changes over the subsequent decade.
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Panel A: Japanese Males aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -4.7744 -5.0284 -5.218 -5.4851 -5.4686 -5.7063 -6.0113

Slope (B) 0.0944 0.1003 0.0957 0.0985 0.0939 0.0954 0.1015
GMA (C) 96.29 96.11 100.27 101.56 103.9 105.56 105.22

Var(GMA) (D) 0.1233 0.1403 0.2083 0.174 0.236 0.284 0.2173
Exp. age at death (E) 72.3 73.59 75.98 77.87 78.62 80.54 81.99

K-S statistic (F) 0.01 0.01 0.04 0.03 0.04 0.05 0.05
Expected age at death (G) 72.62 73.91 76.76 78.45 79.44 81.42 82.84 10.22

∆ due to: postponement (H) -0.06 1.44 0.48 0.84 0.63 -0.14 3.19
compression (I) 1.35 0.96 1.41 -0.09 1.28 1.59 6.51
model error (J) 0 0.45 -0.19 0.24 0.06 -0.04 0.52

Median age at death (K) 72.26 73.68 76.83 78.89 80.01 82.11 83.72 11.45
∆ due to: postponement (L) -0.06 1.47 0.49 0.87 0.66 -0.14 3.27

compression (M) 1.54 1.07 1.55 -0.09 1.39 1.7 7.15
model error (N) -0.06 0.62 0.02 0.34 0.06 0.05 1.03

75th perc. of age at death (O) 78.99 80.19 83.27 85.19 86.41 88.37 89.69 10.69
∆ due to: postponement (P) -0.09 2 0.65 1.16 0.86 -0.18 4.4

compression (Q) 1.31 0.89 1.29 -0.08 1.15 1.39 5.96
model error (R) -0.04 0.18 -0.02 0.14 -0.06 0.12 0.33

90th perc. of age at death (S) 84.25 85.32 88.28 90.06 91.22 93.04 94.07 9.82
∆ due to: postponement (T) -0.1 2.42 0.78 1.38 1.01 -0.21 5.27

compression (U) 1.1 0.74 1.06 -0.06 0.95 1.13 4.91
model error (V) 0.08 -0.18 -0.06 -0.16 -0.14 0.11 -0.36

95th perc. of age at death (W) 87.16 88.07 90.97 92.75 93.83 95.6 96.45 9.29
∆ due to: postponement (X) -0.11 2.64 0.84 1.5 1.09 -0.23 5.72

compression (Y) 0.97 0.65 0.94 -0.06 0.83 1 4.33
model error (Z) 0.06 -0.38 -0.01 -0.36 -0.16 0.08 -0.76

(table continues below)
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Panel B: Japanese Females aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -5.1501 -5.4822 -5.8625 -6.095 -6.2076 -6.4529 -6.562

Slope (B) 0.0957 0.1024 0.1052 0.1041 0.1009 0.1019 0.1039
GMA (C) 99.56 99.59 101.89 104.67 107.51 109.37 109.27

Var(GMA) (D) 0.2117 0.2239 0.3236 0.4334 0.4868 0.5254 0.5439
Exp. age at death (E) 75.38 77.12 79.89 82.17 83.93 85.93 86.41

K-S statistic (F) 0.04 0.04 0.05 0.07 0.08 0.09 0.11
Expected age at death (G) 76.14 77.94 80.92 83.43 85.35 87.57 88.47 12.33

∆ due to: postponement (H) 0.01 0.95 1.19 1.23 0.84 -0.05 4.18
compression (I) 1.74 1.82 1.09 0.54 1.18 0.52 6.89
model error (J) 0.05 0.21 0.23 0.17 0.24 0.43 1.33

Median age at death (K) 76.24 78.2 81.32 83.98 86.1 88.46 89.43 13.19
∆ due to: postponement (L) 0.01 0.99 1.25 1.28 0.88 -0.05 4.36

compression (M) 1.92 1.96 1.14 0.56 1.22 0.53 7.33
model error (N) 0.03 0.17 0.27 0.28 0.25 0.48 1.49

75th perc. of age at death (O) 82.61 84.2 86.94 89.43 91.56 93.7 94.41 11.80
∆ due to: postponement (P) 0.01 1.26 1.57 1.61 1.09 -0.06 5.48

compression (Q) 1.6 1.59 0.92 0.45 0.98 0.43 5.97
model error (R) -0.02 -0.12 0 0.07 0.07 0.35 0.34

90th perc. of age at death (S) 87.6 88.81 91.4 93.68 95.76 97.75 98.2 10.60
∆ due to: postponement (T) 0.01 1.47 1.81 1.85 1.24 -0.07 6.32

compression (U) 1.32 1.29 0.74 0.36 0.79 0.35 4.86
model error (V) -0.12 -0.17 -0.28 -0.13 -0.05 0.18 -0.58

95th perc. of age at death (W) 90.35 91.36 93.84 96.03 98.1 99.94 100.29 9.94
∆ due to: postponement (X) 0.02 1.58 1.94 1.98 1.32 -0.08 6.76

compression (Y) 1.16 1.13 0.65 0.32 0.69 0.3 4.25
model error (Z) -0.16 -0.24 -0.39 -0.22 -0.18 0.12 -1.07

Table 3: Gompertzian fitted parameters (first sub-panel) and various metrics (following sub-panels)
of the distribution of age at death conditional on reaching age 50, and disaggregation of changes in
these metrics due to postponement, compression and model error, Japan. Males in Panel A and
Females in Panel B. Changes refer to changes over the subsequent decade.
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Panel A: UK Males aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -4.8999 -4.9516 -4.9788 -5.3142 -5.4691 -5.692 -5.6793

Slope (B) 0.098 0.0991 0.0972 0.1032 0.1018 0.0993 0.0951
GMA (C) 95.88 95.88 97.06 97.59 99.74 103.26 105.44

Var(GMA) (D) 0.3018 0.4096 0.2327 0.231 0.0983 0.1788 0.3654
Exp. age at death (E) 72.84 73.12 73.64 75.55 77.11 79.58 80.35

K-S statistic (F) 0.02 0.04 0.01 0.02 0.01 0.04 0.06
Expected age at death (G) 72.62 72.74 73.63 75.5 77.49 80.36 81.61 9.00

∆ due to: postponement (H) 0 0.38 0.19 0.81 1.37 0.83 3.58
compression (I) 0.27 0.14 1.72 0.76 1.1 -0.07 3.93
model error (J) -0.15 0.36 -0.04 0.42 0.4 0.49 1.49

Median age at death (K) 72.1 71.99 73.26 75.26 77.52 80.96 82.43 10.33
∆ due to: postponement (L) 0 0.38 0.19 0.83 1.42 0.86 3.69

compression (M) 0.31 0.16 1.92 0.83 1.19 -0.07 4.33
model error (N) -0.42 0.73 -0.12 0.6 0.83 0.68 2.3

75th perc. of age at death (O) 79.08 79.13 80.1 82.06 84.1 87.22 88.57 9.48
∆ due to: postponement (P) 0 0.54 0.26 1.1 1.85 1.13 4.89

compression (Q) 0.26 0.14 1.61 0.69 0.97 -0.06 3.61
model error (R) -0.22 0.3 0.08 0.25 0.3 0.28 0.99

90th perc. of age at death (S) 84.63 84.92 85.61 87.31 89.12 91.87 92.98 8.35
∆ due to: postponement (T) 0 0.66 0.31 1.31 2.18 1.33 5.79

compression (U) 0.22 0.11 1.33 0.56 0.79 -0.05 2.96
model error (V) 0.07 -0.08 0.05 -0.05 -0.22 -0.18 -0.41

95th perc. of age at death (W) 87.51 88.04 88.63 90.16 91.82 94.32 95.3 7.80
∆ due to: postponement (X) 0 0.72 0.34 1.42 2.35 1.44 6.27

compression (Y) 0.19 0.1 1.17 0.49 0.69 -0.04 2.6
model error (Z) 0.34 -0.24 0.02 -0.25 -0.55 -0.41 -1.08

(table continues below)
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Panel B: UK females aged 50 1959 1969 1979 1989 1999 2009 2019 Total ∆
Intercept (A) -5.3621 -5.4337 -5.4487 -5.7402 -5.8455 -6.0365 -6.1344

Slope (B) 0.0994 0.0981 0.0959 0.1011 0.1015 0.1009 0.1016
GMA (C) 99.88 101.25 102.59 102.76 103.59 105.82 106.39

Var(GMA) (D) 0.1613 0.1124 0.1751 0.0781 0.148 0.2912 0.3637
Exp. age at death (E) 76.61 77.48 78.04 79.64 80.5 82.37 83.1

K-S statistic (F) 0.03 0.02 0.04 0.02 0.04 0.07 0.08
Expected age at death (G) 77.36 78.03 78.83 80.11 81.48 83.7 84.61 7.24

∆ due to: postponement (H) 0.5 0.48 0.07 0.33 0.94 0.24 2.56
compression (I) 0.37 0.08 1.53 0.53 0.94 0.49 3.93
model error (J) -0.2 0.23 -0.31 0.51 0.35 0.18 0.76

Median age at death (K) 77.5 78.19 79.24 80.55 81.96 84.46 85.51 8.01
∆ due to: postponement (L) 0.51 0.5 0.07 0.35 0.98 0.25 2.65

compression (M) 0.41 0.09 1.65 0.56 0.99 0.51 4.21
model error (N) -0.23 0.47 -0.42 0.5 0.53 0.29 1.15

75th perc. of age at death (O) 83.8 84.77 85.64 87.06 88.2 90.35 91.13 7.33
∆ due to: postponement (P) 0.69 0.66 0.09 0.45 1.24 0.32 3.44

compression (Q) 0.34 0.07 1.36 0.46 0.8 0.41 3.44
model error (R) -0.06 0.14 -0.03 0.24 0.1 0.05 0.44

90th perc. of age at death (S) 88.67 89.79 90.58 91.86 92.77 94.67 95.32 6.65
∆ due to: postponement (T) 0.82 0.79 0.11 0.52 1.43 0.37 4.04

compression (U) 0.28 0.06 1.12 0.37 0.65 0.33 2.81
model error (V) 0.03 -0.06 0.05 0.01 -0.18 -0.06 -0.2

95th perc. of age at death (W) 91.36 92.57 93.19 94.42 95.23 97.02 97.56 6.21
∆ due to: postponement (X) 0.89 0.86 0.12 0.56 1.54 0.39 4.35

compression (Y) 0.24 0.05 0.98 0.33 0.57 0.29 2.47
model error (Z) 0.09 -0.29 0.13 -0.08 -0.31 -0.14 -0.61

Table 4: Gompertzian fitted parameters (first sub-panel) and various metrics (following sub-panels)
of the distribution of age at death conditional on reaching age 50, and disaggregation of changes
in these metrics due to postponement, compression and model error, UK. Males in Panel A and
Females in Panel B. Changes refer to changes over the subsequent decade.
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Country Sweden Sweden Netherlands Netherlands Australia Australia Canada Canada Italy Italy Spain Spain
Sex Male Female Male Female Male Female Male Female Male Female Male Female

Total ∆: Mean age at death 6.88 7.56 6.25 6.25 10.35 8.80 8.34 7.80 8.08 8.53 8.02 9.51
Comprised of: Postponement 1.64 2.12 1.71 2.22 3.69 2.44 1.77 2.37 1.60 2.58 2.21 2.43

Compression 5.01 5.43 3.87 3.61 5.14 5.43 6.05 4.80 5.86 4.95 5.56 6.32
Model error 0.24 0.00 0.67 0.42 1.53 0.94 0.52 0.66 0.62 1.01 0.27 0.77

Total ∆: Median 7.61 8.16 6.91 7.07 11.86 9.59 9.70 8.71 8.92 9.15 9.14 10.45
Comprised of: Postponement 1.68 2.21 1.78 2.30 3.81 2.53 1.82 2.45 1.66 2.68 2.26 2.54

Compression 5.36 5.68 4.16 3.80 5.65 5.77 6.69 5.12 6.38 5.22 6.11 6.70
Model error 0.57 0.27 0.97 0.98 2.41 1.29 1.19 1.14 0.88 1.25 0.76 1.21

Total ∆: 75th percentile 6.75 7.47 5.75 6.45 10.67 8.23 8.31 7.71 7.59 8.09 8.55 8.99
Comprised of: Postponement 2.25 2.80 2.29 3.02 5.01 3.25 2.42 3.21 2.15 3.40 3.05 3.17

Compression: 4.37 4.56 3.40 3.08 4.70 4.70 5.62 4.20 5.29 4.22 5.11 5.45
Model error: 0.13 0.10 0.06 0.35 0.97 0.29 0.26 0.30 0.16 0.46 0.39 0.37

Total ∆: 90th percentile 5.96 6.77 5.00 5.82 8.91 7.20 7.10 6.84 6.63 7.18 7.72 7.81
Comprised of: Postponement 2.67 3.25 2.67 3.57 5.92 3.79 2.89 3.78 2.53 3.94 3.65 3.64

Compression: 3.56 3.68 2.76 2.50 3.86 3.82 4.67 3.44 4.34 3.41 4.22 4.43
Model error: -0.28 -0.16 -0.43 -0.24 -0.87 -0.41 -0.46 -0.38 -0.23 -0.18 -0.15 -0.26

Total ∆: 95th percentile: 5.60 6.33 4.73 5.30 8.14 6.62 6.37 6.29 6.11 6.70 7.32 6.82
Comprised of: Postponement 2.90 3.48 2.87 3.86 6.40 4.08 3.13 4.09 2.72 4.23 3.97 3.89

Compression: 3.11 3.20 2.42 2.18 3.40 3.35 4.13 3.02 3.81 2.98 3.72 3.87
Model error: -0.41 -0.35 -0.56 -0.75 -1.66 -0.81 -0.89 -0.82 -0.42 -0.51 -0.38 -0.94

Table 5: Disaggregation due to compression, postponement and model error (other) of changes in various metrics of the distribution
of the age at death conditional on reaching age 50, between 1959 and 2019, males and females in various countries
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Panel A: Males Percentile of age-at-death distribution
50 55 60 65 70 75 80 85 90 95 GMA

1959 6.41 7.24 8.02 8.80 9.53 10.26 11.00 11.78 12.66 13.80 17.66
1969 6.33 7.13 7.90 8.67 9.42 10.15 10.93 11.73 12.64 13.82 17.55
1979 7.47 8.23 8.99 9.73 10.41 11.09 11.80 12.55 13.41 14.51 17.97
1989 8.22 8.95 9.64 10.29 10.92 11.55 12.20 12.90 13.69 14.72 17.82
1999 9.10 9.77 10.38 10.96 11.52 12.08 12.66 13.27 13.97 14.89 17.85
2009 10.18 10.80 11.37 11.92 12.44 12.96 13.49 14.05 14.66 15.47 18.85
2019 10.49 11.13 11.72 12.27 12.79 13.29 13.80 14.34 14.93 15.71 19.00

Panel B: Females Percentile of age-at-death distribution
50 55 60 65 70 75 80 85 90 95 GMA

1959 9.20 9.81 10.42 10.99 11.54 12.09 12.67 13.29 13.99 14.94 18.02
1969 9.63 10.25 10.84 11.39 11.92 12.46 13.01 13.60 14.29 15.20 18.32
1979 10.68 11.26 11.81 12.33 12.84 13.36 13.89 14.46 15.10 15.95 18.95
1989 10.89 11.47 12.02 12.55 13.05 13.55 14.06 14.60 15.22 16.02 18.75
1999 11.08 11.63 12.15 12.64 13.11 13.59 14.07 14.58 15.17 15.93 18.41
2009 11.76 12.28 12.76 13.22 13.66 14.10 14.55 15.03 15.58 16.31 19.08
2019 12.07 12.57 13.03 13.47 13.89 14.31 14.74 15.20 15.73 16.43 19.14

Table 6: Savings target at retirement age (expressed as a proportion of annual consumption) needed
to ensure that with SS replacing 30% of consumption, and retirement at age 62, the individual will
have enough resources to maintain that real level of consumption until each percentile of length
of life, conditional on reaching age 50. Real interest rates are 2.5% p.a.. US population mortality
in each year. Figures in the table can be adjusted to account for different SS replacement rates or
defined benefit pension or annuity income by multiplying by (1 − RRSS,DB)/0.7. If savings are held
primarily in pre-tax accounts, these targets should be adjusted by a factor of 1/(1 − τ), where τ is
the individual’s average tax rate in retirement.
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Panel A: Males Percentile of age-at-death distribution
50 55 60 65 70 75 80 85 90 95 GMA

1959 3.58 4.51 5.39 6.28 7.10 7.92 8.77 9.65 10.65 11.93 16.30
1969 3.48 4.39 5.26 6.13 6.98 7.81 8.69 9.59 10.62 11.96 16.18
1979 4.77 5.64 6.49 7.32 8.09 8.87 9.67 10.52 11.49 12.74 16.66
1989 5.62 6.45 7.23 7.96 8.67 9.39 10.13 10.92 11.81 12.98 16.49
1999 6.62 7.37 8.06 8.72 9.36 9.99 10.65 11.34 12.13 13.17 16.52
2009 7.84 8.54 9.19 9.80 10.40 10.99 11.58 12.21 12.91 13.83 17.65
2019 8.19 8.91 9.58 10.20 10.79 11.36 11.94 12.54 13.22 14.09 17.82

Panel B: Females Percentile of age-at-death distribution
50 55 60 65 70 75 80 85 90 95 GMA

1959 6.73 7.42 8.11 8.76 9.38 10.00 10.65 11.35 12.14 13.23 16.71
1969 7.21 7.91 8.58 9.20 9.81 10.41 11.04 11.71 12.49 13.52 17.05
1979 8.41 9.07 9.68 10.27 10.84 11.44 12.03 12.68 13.41 14.36 17.76
1989 8.65 9.30 9.92 10.52 11.09 11.65 12.22 12.84 13.54 14.45 17.53
1999 8.85 9.48 10.07 10.62 11.16 11.69 12.24 12.82 13.49 14.35 17.15
2009 9.63 10.21 10.75 11.27 11.77 12.28 12.79 13.33 13.95 14.78 17.91
2019 9.98 10.55 11.07 11.56 12.03 12.51 13.00 13.52 14.12 14.91 17.98

Table 7: Savings target at retirement age (expressed as a proportion of annual consumption) needed
to ensure that with SS replacing 30% of consumption, and retirement at age 67, the individual will
have enough resources to maintain that real level of consumption until each percentile of length
of life, conditional on reaching age 50. Real interest rates are 2.5% p.a.. US population mortality
in each year. Figures in the table can be adjusted to account for different SS replacement rates or
defined benefit pension or annuity income by multiplying by (1 − RRSS,DB)/0.7. If savings are held
primarily in pre-tax accounts, these targets should be adjusted by a factor of 1/(1 − τ), where τ is
the individual’s average tax rate in retirement.
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Panel A: Males Percentile of age-at-death distribution
50 55 60 65 70 75 80 85 90 95 GMA

1959 1.70 2.70 3.65 4.61 5.50 6.38 7.29 8.24 9.31 10.70 15.40
1969 1.60 2.57 3.51 4.45 5.36 6.26 7.20 8.17 9.29 10.72 15.27
1979 2.98 3.92 4.84 5.73 6.56 7.40 8.26 9.17 10.22 11.57 15.78
1989 3.90 4.80 5.63 6.42 7.19 7.96 8.76 9.61 10.57 11.82 15.60
1999 4.98 5.79 6.53 7.24 7.92 8.60 9.31 10.06 10.91 12.03 15.63
2009 6.29 7.04 7.74 8.40 9.04 9.68 10.32 11.00 11.75 12.74 16.85
2019 6.67 7.45 8.16 8.83 9.47 10.08 10.70 11.35 12.08 13.03 17.04

Panel B: Females Percentile of age-at-death distribution
50 55 60 65 70 75 80 85 90 95 GMA

1959 5.10 5.84 6.58 7.28 7.95 8.62 9.32 10.07 10.92 12.09 15.84
1969 5.61 6.37 7.09 7.76 8.41 9.06 9.74 10.46 11.29 12.40 16.21
1979 6.90 7.61 8.27 8.91 9.53 10.16 10.80 11.50 12.29 13.31 16.97
1989 7.16 7.86 8.53 9.17 9.79 10.39 11.01 11.67 12.43 13.40 16.73
1999 7.38 8.05 8.69 9.28 9.86 10.44 11.03 11.65 12.37 13.30 16.32
2009 8.22 8.84 9.43 9.99 10.52 11.07 11.62 12.20 12.87 13.76 17.13

2019.00 8.60 9.21 9.76 10.29 10.81 11.32 11.85 12.41 13.05 13.90 17.21

Table 8: Savings target at retirement age (expressed as a proportion of annual consumption) needed
to ensure that with SS replacing 30% of consumption, and retirement at age 70, the individual will
have enough resources to maintain that real level of consumption until each percentile of length
of life, conditional on reaching age 50. Real interest rates are 2.5% p.a.. US population mortality
in each year. Figures in the table can be adjusted to account for different SS replacement rates or
defined benefit pension or annuity income by multiplying by (1 − RRSS,DB)/0.7. If savings are held
primarily in pre-tax accounts, these targets should be adjusted by a factor of 1/(1 − τ), where τ is
the individual’s average tax rate in retirement.
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9 Figures

Figure 4: Empirical hazard rates and fitted Gompertz model, US males 1959-2019

Figure 5: Empirical hazard rates and fitted Gompertz model, US females 1959-2019
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Figure 6: Probability distribution of age at death and fitted Gompertz model, US males 1959-2019

Figure 7: Probability distribution of age at death and fitted Gompertz model, US females 1959-2019
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Figure 8: Empirical hazard rates and fitted Gompertz model, French males 1959-2019

Figure 9: Empirical hazard rates and fitted Gompertz model, French females 1959-2019
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Figure 10: Probability distribution of age at death and fitted Gompertz model, French males
1959-2019

Figure 11: Probability distribution of age at death and fitted Gompertz model, French females
1959-2019
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Figure 12: Empirical hazard rates and fitted Gompertz model, Japanese males 1959-2019

Figure 13: Empirical hazard rates and fitted Gompertz model, Japanese females 1959-2019
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Figure 14: Probability distribution of age at death and fitted Gompertz model, Japanese males
1959-2019

Figure 15: Probability distribution of age at death and fitted Gompertz model, Japanese females
1959-2019
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Figure 16: Empirical hazard rates and fitted Gompertz model, UK males 1959-2019

Figure 17: Empirical hazard rates and fitted Gompertz model, UK females 1959-2019
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Figure 18: Probability distribution of age at death and fitted Gompertz model, UK males 1959-2019

Figure 19: Probability distribution of age at death and fitted Gompertz model, UK females 1959-2019
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