MODELLING AND MANAGEMENT OF LONGEVITY RISK

Andrew Cairns
Heriot-Watt University,
and The Maxwell Institute, Edinburgh
Philadelphia, 2013

Acknowledgements: David Blake, Kevin Dowd, Guy Coughlan
Plan

- Longevity risk
- Modelling
- Robustness
- Hedging longevity risk
What is longevity risk?

The risk that a group of pensioners survive, in aggregate, for longer than anticipated.

Objectives of work:

- Stochastic modelling of future mortality
 - Multiple populations
- Longevity risk measurement
- Reserving for longevity risk
- Longevity risk management
Modelling Genealogy

- APC model (M3)
 - APC model (M3)
 - Currie/Richards (M4)
 - 2-D P-splines
 - Eilers/Marx P-splines
 - DDE
 - Hyndman et al.
 - Booth et al.
 - Lee-Carter (M1)
 - Renshaw-Haberman (M2)

- CBD-1 (M5)
- CBD-2 (M6)
- CBD-3 (M7)
- CBD-4 (M8)
- Multi-population
- Multi-population

Time
Modelling challenges

- Robust modelling of multiple populations
- Greater understanding of modelling assumptions and limitations
- Data
 - Volume: years + age range
 - Reliability: deaths and exposures

Much done, but work more needed on all fronts
Robustness

- Model fit to historical data
- Forecasts of future mortality rates
- Business decisions: e.g.
 - reserving
 - volumes of new business
 - hedging decisions
Customised vs Index-Based Hedges

Customised \Rightarrow hedge linked to pension plan’s own mortality experience

Index-based \Rightarrow hedge linked to e.g. national mortality index

\Rightarrow population basis risk

e.g. q-forwards, S-forwards (www.llma.org)
Risk Management Decisions

Are pension plans getting the right advice?

Why have there been so few index-linked longevity transactions?
Barriers to growth of index-based hedges

- ?? Pension plan risk appetite ⇒ customised

- Consultants avoid consideration of index-based hedges:
 - assessment of basis risk *perceived* as difficult
 - assessment of sponsor’s risk appetite is difficult
 - communication of hedging solution *perceived* as difficult
 - reputational risk
A highly stylised example of good practice

Good ERM \Rightarrow consideration of ALL options

Expected Utility \leftrightarrow Risk Appetite

Options for risk management e.g.:

- no action
- individual buyouts (customised)
- bulk buyout (customised)
- longevity swap (customised)
- index-based swap e.g. q-forward
Longevity risk management options

Issues: size thresholds; fixed costs; basis risk; sampling risk

WARNING: this figure is about concepts – it has no scientific basis!!!!
Choosing between the options

Normalised Utility (Stylised!)

Issues: Varying unit price; Poisson risk; basis risk; risk aversion

WARNING: this figure is about concepts – it has no scientific basis!!!
Discussion

- Index-linked hedges have great potential
- Index-linked hedges have greater potential for robustness problems
- But these can be overcome:
 - More robust multi-population models
 - Careful choice of hedging instrument and maturity
 - Robust hedging strategies

E: A.J.G.Cairns@hw.ac.uk
W: www.ma.hw.ac.uk/~andrewc
References:

