PENSION MATHEMATICS with Numerical Illustrations Second Edition

Pension Research Council

Pension Research Council Publications

A complete listing of PRC publications appears at the back of this volume.

PENSION MATHEMATICS with Numerical Illustrations

Second Edition

Howard E. Winklevoss, Ph.D., MAAA, EA
President
Winklevoss Consultants, Inc.

Published by

Pension Research Council Wharton School of the University of Pennsylvania

and

University of Pennsylvania Press Philadelphia © Copyright 1977 (first edition) and 1993 (second edition) by the Pension Research Council of the Wharton School of the University of Pennsylvania

All rights reserved

Library of Congress Cataloging-in-Publication Data Winklevoss, Howard E.

Pension mathematics with numerical illustrations / Howard E.

Winklevoss. -2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-8122-3196-1

1. Pensions-Mathematics. 2. Pensions-Costs-Mathematics. 3. Pension trusts-Accounting. I. Title.

HD7105.W55 1993

331.25'2-dc20

92-44652

CIP

Printed in the United States of America

To my parents,

Marian and Howard Winklevoss,

my wife,

Carol,

and our children,

Amanda, Cameron, and Tyler

PENSION RESEARCH COUNCIL

Chairman and Director

Jerry S. Rosenbloom, Frederick H. Ecker Professor of Insurance and Risk Management, Wharton School, University of Pennsylvania

Associate Director

Dwight K. Bartlett III, F.S.A., Visiting Executive Professor of Insurance, Wharton School, University of Pennsylvania

Founding Director

Dan M. McGill, Chairman Emeritus, Department of Insurance and Risk Management, Wharton School, University of Pennsylvania

Vincent Amoroso, F.S.A., Principal, KPMG Peat Marwick, Washington, DC

Zvi Bodie, Professor of Finance and Economics, School of Management, Boston University

Gary I. Gates, Secretary, Department of Employee Trust Funds, State of Wisconsin, Madison

Michael S. Gordon, Esq., The Law Offices of Michael S. Gordon, Washington, DC

Donald S. Grubbs, Jr., F.S.A., Consulting Actuary, Grubbs and Company, Inc., Silver Spring, MD

Ronald E. Keller, Executive Vice President, The Principal Financial Group, Des Moines, IA

Judith F. Mazo, Senior Vice President and Director of Research, The Segal Company, New York City

Olivia S. Mitchell, Professor of Labor Relations, School of Industrial and Labor Relations, Cornell University, Ithaca, NY

Alicia H. Munnell, Senior Vice President and Director of Research, Federal Reserve Bank of Boston

Robert J. Myers, F.S.A., International Consultant on Social Security, Silver Spring, MD

George J. Pantos, Esq., Partner, Vedder, Price, Kaufman, Kammholz & Day, Washington, DC James E. Pesando, Professor of Economics, Institute for Policy Analysis, University of Toronto

Samuel H. Preston, Chairman, Department of Sociology, Uni-

versity of Pennsylvania

Richard Prosten, Director, Coordinated Bargaining and Research, Industrial Union Department, AFL-CIO, Washington, DC

Anna M. Rappaport, F.S.A., Managing Director, William M.

Mercer, Inc., Chicago

Sylvester J. Schieber, Director, Research and Information Center, The Wyatt Company, Washington, DC

Ray Schmitt, Specialist in Social Legislation, Congressional Research Service, Library of Congress, Washington, DC

Richard B. Stanger, National Director, Employee Benefits Services, Price Waterhouse, Washington, DC

Marc M. Twinney, Jr., F.S.A., Director, Pension Department, Ford Motor Company, Dearborn, MI

Jack L. VanDerhei, Associate Professor of Risk and Insurance, Temple University

L. Edwin Wang, Retired President, Board of Pensions of the Lutheran Church in America, Minneapolis, MN

Howard E. Winklevoss, President, Winklevoss Consultants, Inc., Greenwich, CT

Howard Young, F.S.A., Adjunct Professor of Mathematics, University of Michigan, Ann Arbor

PURPOSE OF THE COUNCIL

The Pension Research Council of the Wharton School of the University of Pennsylvania was created in 1952 for the purpose of sponsoring objective research in the area of private pensions. It was formed in response to the urgent need for a better understanding of the private pension movement. Private pensions have experienced a phenomenal growth during the last three decades, but their economic, political, and social implications are yet to be explored. They seem destined to play a major role in the quest for old-age economic security, but the nature of that role can be ascertained only on the basis of more enlightened evaluation of the capabilities and limitations of the private pension mechanism. It was to conduct an impartial study into the facts and basic issues surrounding private pensions, under the auspices of an academic and professional group representing leadership in every phase of the field, that the Council was organized.

Projects undertaken by the Council are broad in scope and predominantly interpretive rather than technical in nature. In general, attention is concentrated on areas which are not the object of special investigation by other research groups. Its research studies are conducted by mature scholars drawn from both the academic and business spheres. Research results are published from time to time in a series of books and monographs.

Contents

K
i
i
K
1
2

	ion Component, 27	
	Salary Increase, 28	
	Assumption, 28	
	Free Rate, 29	
	tment Risk, 29	
	ion Component, 30	
Total	Interest Rate, 30	
Chapter 3 Ba	asic Actuarial Functions	31
Composit	te Survival Function, 31	
	Function, 34	
Salary Fu	inction, 36	
	function, 40	
Flat I	Oollar Unit Benefit, 41	
	er Average, 41	
Final	Average, 41	
	Functions, 46	
	tht Life Annuity, 46	
	d Certain Life Annuity, 46	
	and Survivor Annuity, 47	
	nd Annuities, 48	
Temp	porary Annuities, 51	
Chapter 4 Pe	ension Plan Population Theory	56
Basic Co	ncepts, 56	
Statio	onary Population, 56	
Matu	re Population, 58	
Unde	rmature and Overmature Populations, 59	
	Constrained Population, 61	
Model Pl	an Population, 64	
Chapter 5 Pe	ension Liability Measures	68
Plan Terr	mination Liability, 69	
Plan Con	tinuation Liability, 70	
Actuarial	Liabilities, 71	
Accru	ued Benefit Method, 73	
Benef	fit Prorate Methods, 74	
Cost 1	Prorate Methods, 75	

Chapter 6 Normal Costs	79
Generalized Normal Cost Function, 80	
Normal Cost Under Actuarial Cost Methods, 83	
Accrued Benefit Method, 84	
Benefit Prorate Method, 85	
Cost Prorate Method, 86	
Summary of Normal Costs Under Actuarial Cost	
Methods, 89	
Plan Termination Cost Method, 94	
Chapter 7 Supplemental Costs	96
Unfunded Actuarial Liability, 97	
Explicit Supplemental Costs, 100	
Implicit Supplemental Costs, 102	
Accrued Benefit Method, 105	
Benefit Prorate Methods, 107	
Cost Prorate Methods, 108	
Explicit and Implicit Supplemental Cost Combinations,	111
Summary of Actuarial Cost Methods, 112	
Chapter 8 Ancillary Benefits	114
Term Cost Concept, 114	
Vested Termination Benefits, 114	
Term Cost, 114	
Present Value of Future Vested Termination	
Benefits, 115	
Disability Benefits, 116	
Term Cost, 116	
Present Value of Future Disability Benefits, 117	
Surviving Spouse Benefits, 117	
Term Cost, 117	
Present Value of Future Surviving Spouse Benefits,	118
Numerical Illustration, 118	
Ancillary Benefits Under Actuarial Cost Methods, 118	
Accrued Benefit Method, 119	
Benefit Prorate Method, 120	
Cost Prorate Method, 121	
Ancillary Benefits for Alternative Liability Measures, 1	22
Comparison of Ancillary Renefit Costs 122	

Chapter 9 Multiple Retirement Ages120
Actuarial Equivalence, 126
Present Value of Future Benefits, 129
Accrued Benefit Method, 131
Benefit Prorate Methods, 132
Cost Prorate Methods, 133
Relative Cost of Early Retirement, 135
Chapter 10 Statutory Funding Requirements13
Minimum Required Contributions, 140
Statutory Funding Methods, 142
Unit Credit Method (Unprojected), 142
Unit Credit Method (Projected), 145
Entry Age Method, 145
Attained Age Method, 145
Individual Level Method, 146
Frozen Entry Age Method, 146
Frozen Attained Age Method, 146
Aggregate Method, 147
Individual Aggregate Method, 148
Statutory Amortization Periods, 148
Additional Funding Charge, 151
Current Liability, 151
Old Supplemental Costs, 153
New Supplemental Costs, 154
Contingent Event Supplemental Costs, 154
Actuarial Liability Full Funding Limit, 155
Current Liability Full Funding Limit, 158
Funding Standard Account, 159
Additional Interest Charge Due to
Late Quarterly Contributions, 159
Miscellaneous Credits, 161
Alternative Minimum Funding Standard, 163
Maximum Tax Deductible Contributions, 164
Numerical Illustration of Statutory Funding
Requirements, 167
Statutory Asset Values, 171
Weighted Average Method, 172
Average Ratio Method, 172
N-Year Moving Average Method, 173
Write-Up Method, 173
Corridor Method, 174

Liability Values, 176	
Accumulated Benefit Obligation (ABO), 177	
Vested Benefit Obligation (VBO), 180	
Projected Benefit Obligation (PBO), 180	
Net Periodic Pension Cost, 182	
Service Cost, 183	
Interest Cost, 185	
Expected Return on Assets, 185	
Amortization Cost, 187	
Future Service of Employees Expected to	
Receive Benefits, 187	
Prepaid (Accrued) Expense, 188	
Transition Obligation (Asset), 188	
Prior Service Cost, 189	
Net Loss (Gain), 190	
Disclosure of Net Periodic Pension Cost, 191	
Numerical Illustration of Net Periodic Pension Cost	, 19
Balance Sheet, 194	
Minimum Additional Liability, 195	
Intangible Asset, 196	
Reconciliation of Funded Status, 196	
Numerical Illustration of Financial	
Statement Disclosure Items, 196	
Critique of SFAS 87, 199	
Salary vs. Benefit Proration, 199	
Linear vs. Formula Proration, 200	
Interest Cost, 201	
Gain (Loss) Amount, 201	
Gain (Loss) Amortization, 201	
Amortization Periods, 202	
VBO Disclosure, 202	
Terminology, 202	
apter 12 Alternative Actuarial Assumptions	

Termination Rates, 205
Disability Rates, 207
Retirement Rates, 209
Salary Rates, 210
Interest Rates, 212
Inflation Rates, 214

Chapter 13 Alternative Plan Benefits	218
Retirement Benefits, 218	
Alternative Benefit Formulas, 218	
Alternative Early Retirement Benefits, 221	
Cost-of-Living Adjustments (COLA), 222	
Vested Termination Benefits, 223	
Disability Benefits, 224	
Surviving Spouse Benefits, 225	
Chapter 14 Funding Policy	226
Economic Liability, 228	
Funding Policy Objectives, 230	
Financial Modeling, 230	
Target Cost Methodology, 232	
Statutory Methods and Assumptions, 234	
FASB Assumptions, 240	
PASB Assumptions, 240	
Chapter 15 Investment Policy: Asset Allocation	242
Capital Market Simulation, 244	
Capital Market Statistics, 245	
Illustrative Capital Market Parameters, 246	
Efficient Frontier, 247	
Real Return Simulations, 248	
Stochastic Pension Simulations, 249	
Chapter 16 Funding and Accounting for Retiree	
Health Benefits	254
Economic Liabilities and Costs, 255	
Health Benefits Cost Function, 255	
Actuarial Assumptions, 257	
Decrement Assumptions, 257	
Economic Assumptions, 258	
Inflation and Utilization, 259	
Employee Costs, 259	
Medicare Reimbursements, 260 Economic Liabilities, 260	
Economic Costs, 262	
Numerical Illustrations, 262	
Funding Limits, 265	

Numerical Illustrations, 270
Accounting Requirements, 273
Liability Values, 273
Net Periodic Postretirement Benefit Cost, 274
Balance Sheet, 275
Footnote Disclosure, 276
Numerical Illustrations, 277
Critique of SFAS 106, 279
Salary vs. Benefit Proration, 279
Proration Pattern and Period, 279
Interest Cost, 280
Gain (Loss) Amount, 280
Gain (Loss) Amortization, 281
Amortization Periods, 281
Terminology, 281

Glossa	ry of	Mathematical	Notation283
Index		••••	303

List of Tables

lable		
1-1	Retirement Benefits as Percent of Salary at	
	Retirement for 8-Percent-of-Salary DC Plan	2
1-2	Retirement Benefits as Percent of Salary at	
	Retirement for Alternative DB Plan Formulas	3
1-3	Summary of Model Plan Benefits	11
2-1	1971 Group Annuity Mortality Rates for Males	16
2-2	Mortality-Based Survival Probabilities	17
2-3	Select and Ultimate Termination Rates	19
2-4	Termination-Based Survival Probabilities	
	for Various Entry Ages	20
2-5	Disabled-Life Mortality Rates	22
2-6	Disabled-Life Survival Probabilities	. 22
2–7	Disability Rates	23
2-8	Disability-Based Survival Probabilities	23
2-9	Early Retirement Rates	25
2-10	Merit Salary Scale	27
2-11	Salary Projections Inclusive of Merit, Productivity,	
	and Inflation	28
2-12	Investment Risk Estimates	30
3-1	Probability of Surviving in Service to	
	Age 65, $_{65-x}p_x^{(T)}$. 33
3-2	Service Table	35
3-3	Compound Interest Function, v'	37
3-4	Salary Function per Dollar of Entry	
	Age Salary, $s_x + s_y$	39
3-5	Benefit Accrual and Accrued Benefit Functions	
	Expressed as a Percent of the Projected Benefit	44

Table	
3-6	Annuity Values Under Alternative Interest
	and Mortality Assumptions50
3-7	Present Value of a Temporary Employment-Based
	Life Annuity from Age x to Age 65, $\ddot{a}_{x:\overline{65-x}}^{T}$
3-8	Present Value of a Temporary Employment-Based
	and Salary-Based Life Annuity from Age x to Age 65,
	$\ddot{a}_{x,65-x}^{T}$
4–1	Development of a Stationary Population 57
4-2	Development of a Mature Population
4-3	Development of an Undermature Population
4-4	Development of an Overmature Population
4-5	Development of a Size-Constrained Population 62
4-6	Hiring Age Distribution and Salary Scale
4-7	Population Statistics
5-1	Plan Termination and Plan Continuation Liabilities
	as a Percentage of the Age-65 Value 72
5-2	Actuarial Liability and '(PVFB) _x Functions as a
	Percentage of the Age-65 Value 77
6-1	Normal Cost Functions as a Percent of Attained
	Age Salary
6-2	Percentage of Projected Retirement Benefit
	Allocated to Each Age Under Various Actuarial
	Cost Methods
6-3	Cumulative Percentage of Projected Retirement
	Benefit Allocated to Each Age Under Various
	Actuarial Cost Methods
7–1	Summary of Actuarial Cost Methods113
8–1	Ancillary Benefit Cost Functions: Term Costs as a
	Percent of Salary and PVFB Functions as a Percent
	of '(PVFB) _x 119
8–2	Ancillary Benefits Under Alternative Normal Costs
	as a Percent of Retirement Benefit Normal Cost123
8–3	Ancillary Benefits Under Alternative Actuarial
	Liabilities as a Percent of Retirement Benefit
	Actuarial Liability124
9–1	Actuarial Equivalent Grading Function128

Table		
9-2	Relative Cost of Early Retirement With Full	
	Benefit Accruals for Various Normal Costs	.136
9-3	Relative Cost of Early Retirement With Actuarially	
	Reduced Benefit Accruals for Various	
	Normal Costs	.137
10-1	Statutory Funding Method Terminology	.143
10-2	Characteristics of Statutory Funding Methods	
10-3	Amortization Periods for Minimum Required	
	Contributions	.149
10-4	Minimum Required Contribution (End of Year)	
10-5a	Funding Standard Account	
10-5b	Development of Additional Funding Charge	. 161
10-6	Valuation and Experience Assumptions	
10-7	Projection of ERISA Minimum Required and	
	Maximum Tax Deductible Contribution	. 169
10-8	Projection of ERISA Minimum Required and	
	Maximum Tax Deductible Contribution Under	
	Alternative Funding Methods	.170
10-9	Effect of Alternative Asset Valuation Methods	
	on the Actuarial Value of Plan Assets	.175
11-1	Net Periodic Pension Cost Components	. 183
11-2	Disclosure of Net Periodic Pension Cost	.192
11-3	Projection of SFAS 87 Net Periodic Cost	
	Disclosure Items	. 193
11-4	Reconciliation of Funded Status	. 197
11-5	Projection of SFAS 87 Financial Statement	
	Disclosure Items	
11-6	Reconciliation of SFAS 87 Values	.200
12-1	Effect of Alternative Mortality Rates	.204
12-2	Effect of Alternative Termination Rates	.206
12-3	Effect of Alternative Disability Rates	. 208
12-4	Effect of Alternative Retirement Rates	.209
12-5	Effect of Alternative Salary Rates	
12-6	Effect of Alternative Interest Rates	. 213
12-7	Effect of Alternative Inflation Rates	.216
13-1	Effect of Alternative Benefit Formulas	

Table	
13-2	Effect of Non-Reduced Benefits at Alternative
	Retirement Ages as a Percent of Values for
	Retirement at Age 65222
13-3	Effect of Non-Reduced Benefits at Alternative
	Retirement Ages as a Percent of Values of
	Actuarially Reduced Benefits222
13-4	Effect of Automatic Cost-of-Living Adjustments 223
13-5	Effect of Alternative Service Requirements
	for Vesting
13-6	Effect of Alternative Age and Service
	Requirements for Disability Benefits225
13-7	Effect of Alternative Surviving Spouse Benefits225
14-1	Economic Liability Definition229
14-2	Illustrative Funding Policy230
14-3	Funding Policy Assumptions238
14-4	Net Periodic Pension Costs Under Alternative
	Assumptions
15-1	Capital Market Statistics, 1971-1990246
15-2	Capital Market Assumptions247
16-1	Retiree Health Benefits Plan and Assumptions263
16-2	Health Benefits Cost Function
16-3	Valuation and Experience Assumptions271
16-4	Net Periodic Postretirement Benefit Cost
	Components274
16-5	SFAS 106 Footnote Disclosure Items276
16-6	Disclosure of Net Periodic Postretirement
	Benefit Cost
16-7	Reconciliation of Funded Status

List of Figures

rigure		
2-1	Single-Decrement Survival Probabilities	
	from Age x to Age 65	24
3–1	Survival and Interest Functions from Age x	
	to Age 65	37
3–2	Attained Age Benefit Accrual Functions as a	
	Percent of the Projected Retirement Benefit	45
3–3	Attained Age Accrued Benefit Functions as a	
	Percent of the Projected Retirement Benefit	45
3-4	Life Annuity vs. Annuity Certain for Life	
	Expectancy	51
3–5	Unit-Based and Salary-Based Temporary Annuity	
	Values from Age x to Age 65	55
5–1	Plan Termination and Plan Continuation	
	Liabilities as a Percentage of the Age-65 Value	73
5-2	Actuarial Liabilities as a Percentage of the	
	Age-65 Value	78
5–3	Actuarial Liabilities as a Percent of Present	
	Value of Future Benefits Liability	78
6-1	Normal Costs as a Percent of Salary Under	
	Various Actuarial Cost Methods	91
6–2	Percentage of Projected Retirement Benefit	
	Allocated to Each Age Under Various Actuarial	
	Cost Methods	92
6–3	Cumulative Percentage of Projected Retirement	
	Benefit Allocated to Each Age Under Various	
	Actuarial Cost Methods	93
6-4	Normal Costs as a Percent of Payroll	

Figure	
6-5	Normal Cost Under Plan Termination Method vs.
	Accrued Benefit Method95
7-1a	Supplemental Costs per \$100 of Unfunded
	Liability Under Alternative Methods103
7-1b	Supplemental Costs per \$100 of Unfunded
	Liability Under Alternative Methods103
7-2a	Unfunded Liability Balance per \$100 of Initial
	Balance Under Alternative Methods104
7-2b	Unfunded Liability Balance per \$100 of Initial
	Balance Under Alternative Methods 104
8-1a	Normal Costs With Ancillary Benefits Under
	Alternative Actuarial Cost Methods125
8-1b	Actuarial Liabilities With Ancillary Benefits
	Under Alternative Actuarial Cost Methods125
9-1a	Normal and Early Retirement Under Alternative
	Normal Costs
9-1b	Normal and Early Retirement Under Alternative
	Actuarial Liabilities
10-1	Percent of Adjusted Unfunded Current Liability154
10-2	Maximum Tax Deductible Contribution164
11-1	Minimum Additional Liability Examples195
11-2	Valuation Year vs. Fiscal Year197
12-1	Effect of Alternative Mortality Experience205
12-2	Effect of Alternative Termination Experience207
12-3	Effect of Alternative Disability Experience208
12-4	Effect of Alternative Retirement Experience210
12-5	Effect of Alternative Salary Experience212
12–6	Effect of Alternative Investment Experience215
12-7	Effect of Alternative Inflation Experience217
13-1	Contributions Under Alternative Benefit
	Formulas
13-2	Effect of Ad Hoc Cost-of-Living Adjustments 224
14-1	Pension Policy Components227
14-2	Comparison of Alternative Liabilities229
14-3	Deterministic Target Cost Methodology232
14-4	Stochastic Target Cost Methodology234

Figure		
14-5	Ideal Relation Between Statutory Limits and	
	Plan Contributions	.235
14-6	Contribution Limits Under Alternative	
	Actuarial Assumptions	.238
14-7	Deterministic Projection of Contribution Policy	
14-8	Stochastic Projection of Contribution Policy	.239
14-9	Deterministic Projection of SFAS 87 Expense	
	and Funded Status	. 241
14-10	Stochastic Projection of SFAS 87 Expense and	
	Funded Status	. 241
15-1	Efficient Frontier	
15-2a		
15-2b		
15-2c	Ten-Year Compound Real Returns	
15-3a	Contributions in Year 5 Under Alternative	
	Asset Mixes	. 251
15-3b	Pension Expense in Year 5 Under Alternative	
	Asset Mixes	. 251
15-3c	Economic Liability Funded Ratio in Year 5	
	Under Alternative Asset Mixes	. 251
15-4a	Contributions in Year 10 Under Alternative	
	Asset Mixes	. 252
15-4b	Pension Expense in Year 10 Under Alternative	
	Asset Mixes	. 252
15-4c	Economic Liability Funded Ratio in Year 10	
	Under Alternative Asset Mixes	. 252
16-1	Economic Liability Sensitivity Analysis	264
16-2	Economic Cost Sensitivity Analysis	264
16-3	Retiree Health Benefits Contributions Under	
	Alternative Funding Approaches	272
16-4	Retiree Health Benefits Funded Status Under	
	Alternative Funding Approaches	272
16-5	SFAS 106 Expense Under Alternative Funding	
	Scenarios	. 278
16-6	APBO Funded Status Under Alternative	
	Funding Scenarios	. 278

Foreword from the First Edition

This book is the culmination of ten years of intensive inquiry by Howard Winklevoss into the intricacies of pension costs and actuarial liabilities. It is a welcome and much needed addition to pension literature.

When I began my pension research activities in the early 1950s, I sought in vain for explanations of pension cost behavior of the type that abound in this book. I suspect that many of these relationships were known, perhaps intuitively, by actuaries actively engaged in pension consulting or the pension operations of life insurance companies. If so, there insights and perceptions were apparently treated as proprietary information, to be confined to internal communications or the inner recesses of their minds. With some notable exceptions, the ideas did not find their way into published pension literature.

To a considerable degree, knowledge of pension cost behavior was constrained by the technology of the day. Pension cost calculations were laborious and many shortcuts and approximations were used. With the development of sophisticated, high-speed computers, it has become feasible to refine pension actuarial techniques and assumptions. In particular, it has become feasible through the construction of computer models to simulate the experience of a pension plan over many years, with a changing population mix and a variety of actuarial assumptions, especially those of an economic nature. The fruit of this improved technology and refined actuarial approaches is a keener perception of pension cost behavior under varied circumstances.

To a large extent this book simply quantifies and provides new or improved actuarial notation for long recognized pension cost concepts and procedures. In certain areas, however, new insights and techniques have been developed. Both types of contributions are useful and innovative. The book should serve the needs of pension actuaries of all persuasions, pension consultants, management and labor pension specialists, governmental officials with pension responsibilities, students, and others interested in the dynamics of pensions. Dr. Winklevoss is to be commended for having completed this prodigious and scholarly task.

On a more personal note, it has been an intellectually rewarding experience to work with Dr. Winklevoss on this project and other academic undertakings.

Philadelphia, PA December 1976 Dan M. McGill

Preface

Although this book is entitled *Pension Mathematics with Numerical Illustrations*, Second Edition, it is more like the first edition of a new book. With the exception of the first few chapters, the text is a virtual rewrite of the original book. Two topics have been trimmed back from the first edition, namely, the analysis of ancillary benefits and early retirement. This edition covers all of the relevant material on these topics, but the presentation is more concise. The major additions to the book are chapters on (1) statutory funding requirements, (2) pension accounting, (3) funding policy analysis, (4) asset allocation, and (5) retiree health benefits.

The pension industry has changed considerably since the first edition was published in 1977. At that time, ERISA had just been enacted and was being implemented throughout the pension industry. Just prior to its passage, I was involved in several government-sponsored research assignments on the expected cost of alternative vesting provisions, and the Business Roundtable asked me to share my findings at one of their meetings. After my talk, one of the members cornered me and asked, "Why are you so enthusiastic about the pending pension legislation? Don't you know that once they get the first law passed they'll keep on passing them and eventually do more harm than good?" Little did I know how accurate this statement was.

Many of us had such great expectations for ERISA and, while many of its provisions are clearly beneficial, the avalanche of regulations and new pension legislation since its passage has been terrifying. As an example of its complexity, the reader need only turn to page 156 and glance at the series of equations needed to determine the minimum required contributions to a qualified pension plan. Unless Congress simplifies the various statutory and regulatory requirements for defined benefit pension plans,

and does it quickly, only historians will be interested in this book, for it will provide the mathematics of a subject no longer relevant to corporate America.

Another major change since the first edition was the promulgation of SFAS 87, which sets forth a comprehensive set of procedures to follow in accounting for pension plans. Corporate America vigorously fought against the FASB requiring such a rigid set of accounting rules but has hardly said a word since its implementation in 1987. One of the reasons for this silence may be that many companies have experienced negative pension expense (i.e., pension income) since the implementation of SFAS 87, which no doubt came as a pleasant surprise. This resulted from strong capital markets in the 1980's and the FASB's requirement that the discount rate used in calculating pension expense be tied to the spot rate on long-term corporate bonds. These rates, in recent years, have been uncharacteristically high relative to inflation, a result that no doubt occurred because of the poor performance of fixed-income investments when inflation was high in the early 1980's. In any event, it will be interesting to see the reaction among plan sponsors if long-term rates decrease at a time when the market value of plan assets drop. Complacency with the accounting standard may turn, once again, to vigorous complaints.

The third area of change in the pension field since the mid-1970's is among practitioners. I recall speaking at an actuarial meeting in the late 1970's where I was asked to defend the use of explicit best estimate assumptions. It did not seem like much of an issue because using such assumptions appeared logical. Conservatism, I argued, could be achieved by contributing more to the plan than the amount determined using best estimate assumptions. To my surprise, only a few individuals at the meeting seemed to embrace the use of explicit best estimate assumptions. This has all changed now, with best estimate assumptions being required for both statutory and accounting calculations. In fact, if anything, the assumptions may have become a little too "best estimate." For example, the first edition of this book used a 7 percent interest rate in all of the illustrations, a rate that was on the high side at the time. This edition uses an 8 percent rate, which, ironically, is on the low side. Has the actuarial community, egged on by SFAS 87 as well as the IRS, become a little too aggressive, with 9 and 10 percent rates being common? Plan

sponsors have no doubt enjoyed the effects of using higher interest rates which, in many cases, caused their contributions to be zero and accounting expense to be negative. On the other hand, if future interest rates must be lower than the rates currently used because of sustained low levels of inflation, the adjustment to increased costs may be painful for many corporations.

The author would like to thank all of the individuals who assisted in this edition. I owe special thanks to Dan M. McGill, Emeritus Professor, Wharton School. Nearly 25 years ago Dan hired me to teach at the Wharton School, and my association with him over the ensuing 12 years while I was teaching there was a richly rewarding experience. He gave me considerable encouragement and assistance in completing the first edition as well as the second edition of this book.

Steven R. Strake, senior actuary at Winklevoss Consultants, performed all of the numerical calculations in the book. As readers will soon discover, this represents a huge amount of work for which I am very grateful. This work was performed by Glenn D. Allison in the first edition and the author would like to recognize that contribution in this edition as well. Jing Cheng Liu, Winklevoss Consultants, provided considerable assistance in editing the book, especially with respect to the statutory and regulatory aspects of pension funding.

Two reviewers deserve special thanks for their very thorough and tedious reviews of each and every sentence and equation in the book. The first is both a former student and employee: Debbie L. Benner, William M. Mercer. It has been a pleasure to work with her over the years. David R. Kass, David R. Kass & Company, provided a similarly exhaustive review, for which I am very grateful.

The University Press sought reviews from two academicians with actuarial backgrounds: Frank G. Bensics, University of Hartford, and James C. Hickman, University of Wisconsin. Both individuals provided insightful comments which were incorporated into the book.

Three Pension Research Council members were asked to review the text. In each case, the comments were extensive and beneficial. These individuals, along with two others who assisted in their review, are Donald S. Grubbs, Jr. and Joseph D. Marsden, Grubbs and Company; Marc M. Twinney and Norman

J. Campeau, Ford Motor Company; and Howard Young, University of Michigan.

Three individuals provided very helpful assistance on Chapter 16, Funding and Accounting for Retiree Health Benefits: Harold S. Cooper, Chicago Consulting Actuaries; Charles C. Morgan, The Prudential Asset Management Company; and Dale H. Yamamoto, Hewitt Associates.

Any remaining errors, omissions, or other shortcomings in the book are the sole responsibility of the author. Readers are invited to assist with the next edition by advising the author of any errors and offering suggestions.

Greenwich, CT December 1992 Howard E. Winklevoss